
Internship Report — MPRI M2
Hybrid System Models with Transparent Assertions

Henri Saudubray, supervised by Marc Pouzet, Inria PARKAS

General Context — Hybrid systems modelers such as Simulink¹ are essential tools in the develop&
ment of embedded systems which evolve in physical environments. They allow for precise descriptions
of hybrid systems through both continuous&time behaviour defined with Ordinary Differential
Equations (ODEs) and discrete&time reactive behaviour similar to what is found in the synchronous
languages such as Lustre [PHP87]. The Zélus language [BP13] aims to reconcile synchronous
languages with hybrid systems, by taking a synchronous language kernel and extending it with
continuous&time constructs similar to what is found in tools like Simulink. Continuous&time behaviour
is computed through the use of an off&the&shelf ODE solver such as Sundials CVODE [BIP16; Hin+05].

Research Problem — The simulation of hybrid system models, as done in Simulink and Zélus, uses
a single ODE solver instance to simulate the entire model at once. This raises a difficult problem: sub&
systems which seemingly should not interfere with each other end up affecting each other’s results.
This is due to the chosen integration method. An adaptive solver like Sundials CVODE will vary
its step length throughout the integration process, and the addition of new, unrelated ODEs in the
system can influence these step lengths, affecting the results obtained for pre&existing ODEs. This
is particularly problematic in the case of run&time executable assertions [CR06; HLR92], which are
typically expected to be transparent: they should not affect the final result of the computation.

We therefore aim to define a new execution model for hybrid system models, which allows for clear
separation between a program and its assertions, in such a way that the results obtained by executing
a model with and without its assertions are the same.

Proposed Contributions — To solve this, we propose a new runtime for the Zélus language that
simulates assertions with their own solvers in order to maintain the separation between assertions
and the model they operate on. We first present a low&level denotational semantics for hybrid models,
similar to the S&functions of Simulink or the FMI/FMU standard of Modelica, and use this interpre&
tation to give an operational semantics of hybrid model simulations as programs in the synchronous
subset of Zélus, using OCaml as our meta&language. The runtime is then lifted into Zélus, allowing
direct manipulation of hybrid simulations in Zélus proper. The addition of assertions is then a simple
modification of the simulation algorithm to handle models with an associated assertion.

Arguments Supporting Their Validity — The interpretation of a simulation as a discrete program
and their lifting into the source language allows for direct and composable manipulation of systems
in isolation. This allows the developer to separate critical parts of the model in order to monitor their
execution in isolation. This is already sufficient to represent observers [HLR92] as done in synchronous
languages such as Lustre. The added convenience of compiling assertions as distinct models allows
the programmer to focus on modelisation without concerning themselves with the required separation
of assertions from their model.

The Zélus compiler is currently being reimplemented, and the code associated with this report is in the
process of being included in this implementation as the simulation engine. As such, this new runtime
has been tested on a variety of examples from the gallery of examples of Zélus; these are available in

¹https://www.mathworks.com/products/simulink
²https://www.codcberg.org/17maiga/hsim

1

https://www.mathworks.com/products/simulink
https://www.codcberg.org/17maiga/hsim

the main repository². A compilation pass from assertions as a syntactic construct to the representation
of assertions as a sub&model is currently being implemented.

Summary and Future Work — During this internship, we have implemented a new runtime allowing
for distinct simulation of models and access to the continuous results without the introduction of
discrete events in the model. This has been used to implement assertions in the spirit of Lustre
observers. At the time of writing, a compilation pass from assertions in the source language to their
internal representation as a separate hybrid model is currently being implemented.

Multiple questions remain. The completion of the compilation pass is an immediate concern; one could
then consider a generalization of this compilation pass to nested assertions (that is, assertions within
assertions), with a recursive definition of a model with assertions. The simulation algorithm for such
a model has already been implemented inside the runtime.

The lifting of simulations into the language raises several questions. As discrete Zélus allows for the
manipulation of past values in the spirit of Lustre, with operators such as pre, we must be able to
store values produced by the simulation in memory. Unfortunately for us, this is not always feasible,
as explained in Section 2.3.3; the solver’s internal manipulation of the state may render previously
computed values invalid³. One could envision a static analysis to forbid such manipulations, with types
being annotated depending on their ability to be copied and stored in memory, similar to Standard
ML’s eqtypes or Haskell’s typeclasses.

Notes and Aknowledgements — For convenience, we use notation inspired by OCaml’s records
throughout this report. This is translated into products and projections on these products as expected.
The notation 𝑣#𝑒 denotes the access to the record member 𝑒 on the value 𝑣.
The following work has been implemented in OCaml, and samples of the code are used for illustration
purposes. Due to space concerns, OCaml type definitions are ommitted from the main body of the
report, and are instead given in Appendix C. They are a direct translation into OCaml of the definitions
given in the report. All of the associated code can additionally be found at https://codeberg.org/17
maiga/hsim.

I wish to thank my supervisor, Marc Pouzet, for his priceless advice and insight throughout this
internship. I am grateful to Timothy Bourke for his kind help with understanding the inner workings
of ODE solvers and zero&crossing detection methods, as well as for his advice on this report. Finally,
I thank Anne Bouillard, Grégoire Bussonne, Charles de Haro, Paul Jeanmaire, Jean&Baptiste Jeannin,
Balthazar Patiachvili, and Loïc Sylvestre for their warm welcome to the PARKAS team and the fasci&
nating discussions throughout my internship.

³This is not a problem exclusive to Zélus; Lustre itself suffers from the same issue with externally defined datatypes.

2

https://codeberg.org/17maiga/hsim
https://codeberg.org/17maiga/hsim

1 Introduction
Hybrid system modelers such as Simulink or Modelica have become ubiquitous in the development of
embedded systems interacting with physical environments. Their ability to describe both continuous&
time behaviour defined using Ordinary Differential Equations, discrete&time behaviours similar to the
approach of the synchronous languages such as Lustre [PHP87], and the interactions between the two
lends itself perfectly to the modelisation of the interactions between a program and its environment.

Modelers such as Simulink or Modelica are distinct from the classical description of hybrid systems
as hybrid automata [Hen00] in their focus on concrete simulation of hybrid models as executable
programs. Zélus follows the same approach, by extending a synchronous language kernel à la Lustre
with continuous&time constructs and compiling models down to a low&level, statically scheduled
representation of models as a set of transition functions over an inner state. This internship continues
in this direction by providing a precise, executable semantics of the simulation of such a representation
using OCaml.

The execution of hybrid models relies on a numerical ODE solver, which computes approximations
to the model’s behaviour in continuous time. A single solver is used to approximate the behaviour of
the entire model; this choice of implementation unfortunately raises unforeseen difficulties. Indeed,
the parallel simulation of independent blocks causes interferences between the two, changing the
simulation results. This is not a consequence of numerical error, but of the internal simulation engine
implementation. The ODE solver approximates the entire model at once, and as such seemingly inde&
pendent parts of the model end up affecting each other through their impact on the solver’s behaviour.

This is particularly unfortunate in the case of run&time assertions. These are typically expected to have
no impact on the execution; we call them “transparent”, in the sense that their execution does not
change the results of the program. Continuous&time assertions may introduce their own ODEs as part
of their computation, and as such, impact the simulation of the rest of the model.

To avoid this interference, we propose a new runtime for the simulation of a hybrid model with asser&
tions, where assertions are simulated using their own ODE solver, thus preventing their interference
with the model they observe. We first present a low&level denotational semantics of hybrid system
models as a collection of functions operating on an inner state, and consider the solving machinery of
hybrid system modelers through this interpretation. We then combine a hybrid model with this solving
machinery in order to obtain a synchronous operational semantics of the simulation. We briefly discuss
some implementation details to motivate some of the choices made. Finally, we use the interpretation
of a simulation as a synchronous program to implement the simulation of continuous&time assertions
independently from their parent model.

2 Hybrid System Model Simulation
The simulation of a hybrid system model is a function from signals to signals. Signals are functions
from time to values, modelling the evolution of a value in time. The exact meaning of time depends on
the nature of the model. Three possible situations may occur: discrete&time models, akin to those found
in synchronous languages like Lustre [PHP87]; continuous&time models with no discontinuities; and
hybrid models, which involve both discrete and continuous behaviours.

2.1 Discrete-Time Models
Zélus starts from a synchronous language kernel à la Lustre, and extends it with continuous&time
constructs [BP13]. This synchronous language kernel allows for the description of variables evolving
in time through streams of values. The notion of time is logical, and is represented as a series of discrete
instants; time is then a value in ℕ, and streams are functions from ℕ to their respective codomains:

3

(** Run a model on a list of inputs. *)
let dsim (DNode model) input =
 let rec run s = function
 | [] -> []
 | i :: is -> let (o, s) = model.step s i in (o :: run s is) in
 run model.s0 input

Listing 1: Discrete simulation in OCaml

𝑆𝑡𝑟𝑒𝑎𝑚(𝑉) = ℕ → 𝑉

Given a stream 𝑠 : 𝑆𝑡𝑟𝑒𝑎𝑚(𝑉), we denote 𝑠𝑛 the 𝑛&th value 𝑠(𝑛) of the stream.

Computation occurs in successive steps performed at each instant, and may depend on values com&
puted at previous instants. This interpretation of time allows a program written in the synchronous
kernel to be considered independently of its physical implementation. Nothing in this representation
tells us anything about how much physical time passes between successive instants.

The programs expressed in this kernel, called discrete nodes, are functions on streams. At each time
instant, given inputs 𝐼 , they produce outputs 𝑂. Producing these outputs may also depend on previ&
ously computed values through operators like pre(e), which returns the value of its sub&expression
e at the previous instant, and e1 -> e2, which returns its left&hand side e1 at the first instant and
its right&hand side e2 afterwards. This requires nodes to store some previously computed values. To
encode this, we define a low&level representation of nodes as Mealy machines, with a state and step
function. Nodes therefore operate on an inner state of type 𝑆: previously computed values must be
stored inside this state in order to refer to them afterwards. The behaviour of a node is represented by
a step function 𝑠𝑡𝑒𝑝 : 𝑆 → 𝐼 → 𝑂 × 𝑆 and an initial state 𝑠0 : 𝑆, used at the first instant. Given a set
of inputs and the current state, the 𝑠𝑡𝑒𝑝 function produces a set of outputs and a new, updated state.
This function is then called at each instant, taking as input the current value of the input signal, and
the state produced by the previous instant.

Since programs may wish to reset the state of a node (for instance, when writing automata; further
motivation will be given in the following sections), nodes also define a reset function 𝑟𝑒𝑠𝑒𝑡 : 𝑆 →
𝑅 → 𝑆. Since nodes may be parameterized by a value, this reset function takes in an additional reset
parameter 𝑅 and the previous state, and returns an updated state. A discrete model with input 𝐼 and
output 𝑂 is then a triple of an initial state, and a step and reset function:

𝐷𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆) ≝ {𝑠0 : 𝑆; 𝑠𝑡𝑒𝑝 : 𝑆 → 𝐼 → 𝑂 × 𝑆; 𝑟𝑒𝑠𝑒𝑡 : 𝑆 → 𝑅 → 𝑆}

Its definition in OCaml is found in Listing 10.

The simulation of such a model then defines two streams: the inner state 𝑠 and the output 𝑜:

𝑑𝑠𝑖𝑚(𝑚)(𝑖𝑛) = 𝑜𝑛 where (𝑜𝑛, 𝑠𝑛+1) = 𝑚#step (𝑖𝑛, 𝑠𝑛) and 𝑠0 = 𝑚#𝑠0

A possible implementation of this simulation in OCaml, where streams are represented by lists of
values, is given in Listing 1.

As an example, consider the program in Listing 2, written in the discrete subset of Zélus (it could have
been written in Lustre in a similar way). This program computes the evolution of the Van der Pol
oscillator in time. The Van der Pol oscillator is defined by the two differential equations

𝑑𝑥
𝑑𝑡

= 𝑦 𝑑𝑦
𝑑𝑡

= 𝜇(1 − 𝑥2)𝑦 − 𝑥

with 𝜇 a scalar parameter. The f_integr and b_integr nodes implement forward and backward Euler
integrators. In more detail, the f_integr node take as input a stream x0 representing the initial value

4

let h = 0.01 (* Integration time step. *)
let mu = 5.0 (* Dampening strength. *)

(* Forward Euler integrator. *)
let node f_integr(x0: float, x': float) = (x: float) where
 rec x = x0 -> pre(x +. x' *. h)

(* Backward Euler integrator. *)
let node b_integr(x0: float, x': float) = (x: float) where
 rec x = x0 -> pre(x) +. x' *. h

(* Van der Pol oscillator. *)
let node vanderpol_discrete() = (x: float, y: float) where
 rec x = b_integr(1.0, y)
 and y = f_integr(1.0, (mu *. (1.0 -. (x *. x)) *. y) -. x)

Listing 2: Van der Pol oscillator in discrete Zélus

10Time
−5

0
5 𝑥

𝑦

Figure 1: Simulation of Listing 2 with ℎ = 0.001

10Time
−5

0

5 𝑥
𝑦

Figure 2: Simulation of Listing 2 with ℎ = 0.1

of the signal to be integrated, and a stream x' representing the derivative of this same signal, sampled
at a predefined integration step h. It then defines a new stream x, approximating the integral of x', as
follows:

x0 = x00 x𝑛+1 = x𝑛 + x'𝑛 ⋅ h

The f_integr and b_integr nodes are used to compute an approximation of the solution to a restricted
form of an initial value problem: given a function 𝑥′(𝑡) computing the derivative of a variable 𝑥 with
respect to time (that is, 𝑑𝑥

𝑑𝑡 (𝑡) = 𝑥′(𝑡)), and an initial value 𝑥0 for this variable, its solution is a function
of time 𝑥(𝑡) whose derivative is 𝑥′, and whose value at 𝑡 = 0 is 𝑥(0) = 𝑥0.

The vanderpol_discrete node then uses these integrators to approximate the behaviour of the Van
der Pol oscillator. Given an initial position at 𝑥 = 1 and 𝑦 = 1, we can formulate the oscillator through
an initial value problem. We can then use two integrators to approximate solutions to 𝑥 and 𝑦. The
output of vanderpol_discrete at instant 𝑛 is then the pair of the coordinates 𝑥 and 𝑦 at time 𝑛 × ℎ.

2.2 Continuous-Time Models
While the model in Listing 2 is simple to understand, it is somewhat rigid: the integration method is
fixed, as well as the time step. The simulation results strongly depend on these parameters, as seen in

5

let mu = 5.0
let hybrid vanderpol_continuous() = (x, y) where
 rec der x = y init 1.0
 and der y = (mu *. (1.0 -. (x *. x)) *. y) -. x init 1.0

Listing 3: Van der Pol oscillator in continuous Zélus

Figure 1 and Figure 2. Even worse, given a time step of ℎ = 1, we quickly encounter NaN values. This
is due to the shape of the Van der Pol oscillator curve; it alternates between steeper and softer phases,
and the integration step must be precise enough to avoid divergence during the steep phases (if the
integration step is too big, the high values for the derivatives cause the results to reach the maximum
representable floating&point number, after which we obtain NaN), with the unfortunate consequence
that the simulation in softer phases will be unnecessarily slow. The programmer therefore has to
think not only about the model being described, but also about the integration scheme, its impact on
performance and the interaction between the model and integrator.

We can do better. Rather than remain in the discrete world, Zélus allows us to express a signal as a
function of continuous time. Time is no longer logical and represented by a series of discrete instants,
but rather physical and continuous. A model is now a function of signals on physical time. Given an
input signal of type 𝐼 , it defines a continuously evolving inner state 𝑠 of type 𝑆, and an output signal of
type 𝑂. This is represented through an initial state 𝑠0 : 𝑆 and two functions. The derivative function
𝑑𝑒𝑟 : 𝐼 → 𝑆 → 𝑆′ computes the derivative 𝑆′ of the inner state 𝑆 at a given time using the value of
the input signal 𝑖 and the inner state at that time (𝑑𝑠

𝑑𝑡 (𝑡) = 𝑑𝑒𝑟(𝑖(𝑡), 𝑠(𝑡))); it must be continuous⁴. The
output function 𝑜𝑢𝑡 : 𝐼 → 𝑆 → 𝑂 computes the output 𝑜 of the model at a given time given the value
of the input signal and the inner state at that time (𝑜(𝑡) = 𝑜𝑢𝑡(𝑖(𝑡), 𝑠(𝑡))). A continuous model is then
a tuple of an initial state and of these two functions:

𝐶𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑆, 𝑆′) ≝ {𝑠0 : 𝑆; 𝑑𝑒𝑟 : 𝐼 → 𝑆 → 𝑆′; 𝑜𝑢𝑡 : 𝐼 → 𝑆 → 𝑂}

For instance, the model of Listing 2 can be expressed in continuous time as seen in Listing 3. Here, x
and y are expressed directly as initial value problems. The notation der x = e init e0 expresses that
the derivative of x with respect to time is e, and that the value of x at time t = 0 is e0.

A major difference between the discrete and continuous models is that the description of the contin&
uous model is kept separate from the ODE solving machinery. Nothing in Listing 3 expresses any
constraints for how the two initial value problems of x and y are solved – we leave this detail to
the language implementation. This allows for greater flexibility in the simulation process, because
independence from the solver means we can choose our approximation method independently from
the model being simulated.

2.3 Numerical ODE Solvers
The simulation of a continuous model solves the initial value problem posed by the initial state 𝑠0 and
the derivative function 𝑑𝑒𝑟, and uses this solution in order to compute the output signal with 𝑜𝑢𝑡. This
is done using a numerical solver which approximates the solution, such as Sundials CVODE — the
integr node from Listing 2 is another example of a numerical solver (albeit not a very good one). In
general, numerical ODE solvers can be considered through a simple interface: given an initial value
problem for a signal 𝑦 : 𝑇𝑖𝑚𝑒 → 𝑌 , in the form of a maximum time 𝑠𝑡𝑜𝑝, a derivative function 𝑓 :
[0, 𝑠𝑡𝑜𝑝] → 𝑌 → 𝑌 ′ such that for all 𝑡 ∈ [0, 𝑠𝑡𝑜𝑝], 𝑑𝑦

𝑑𝑡 (𝑡) = 𝑓(𝑡, 𝑦(𝑡))), and an initial value 𝑦0 : 𝑌 such
that 𝑦(0) = 𝑦0, a numerical ODE solver provides a function

𝑐𝑠𝑜𝑙𝑣𝑒(𝑓)(𝑦0) : (ℎ : 𝑇𝑖𝑚𝑒) → (ℎ′ : 𝑇𝑖𝑚𝑒) × (𝑑𝑘𝑦 : [0, ℎ′] → 𝑌)

⁴This restriction is enforced in Zélus by a typing pass: see [BP13] for details.

6

This function, given a requested horizon ℎ : 𝑇𝑖𝑚𝑒 (this represents the date up to which we wish to
know the approximation of the solution), returns a new horizon ℎ′ ≤ ℎ and an approximation 𝑑𝑘𝑦 :
[0, ℎ′] → 𝑌 of the solution to the initial value problem, that is, 𝑑𝑘𝑦(𝑡) ≈ 𝑦(𝑡) for all 𝑡 ∈ [0, ℎ′]. This
function is called a dense solution.⁵

2.3.1 Sequential Interpretation
Of particular interest is the fact that we use numerical ODE solvers to compute approximations sequen�
tially. Since the solver does not necessarily return an approximation up to the requested horizon, we
may need to perform multiple calls to 𝑐𝑠𝑜𝑙𝑣𝑒 in order to obtain the approximation up to the requested
horizon. Furthermore, solvers can be classified in two broad categories: single&step, stateless solvers
such as the Runge&Kutta methods, and multi&step, stateful solvers such as Sundials CVODE; the main
difference being that the latter remember some information about the previous calls to 𝑐𝑠𝑜𝑙𝑣𝑒 and use
this information to improve the approximation. These two characteristics suggest an interpretation of
an ODE solver as a particular kind of discrete model. Its internal state is the memory of its previous
calls (in the case of a stateless solver, this is empty), and its 𝑠𝑡𝑒𝑝 function is simply the call to 𝑐𝑠𝑜𝑙𝑣𝑒.
The only missing element is the initialization of the solver with an initial value problem, which can
be done as part of the 𝑟𝑒𝑠𝑒𝑡 function.

More formally, a single call to the 𝑐𝑠𝑜𝑙𝑣𝑒 function provides us with an approximation of the solution up
to the returned horizon ℎ′, which may be less than the requested date ℎ. To obtain an approximation
of the solution at a later date, we must perform another call, this time with initial state 𝑑𝑘𝑦(ℎ′), which
is the best approximation of the value of 𝑦(ℎ′). This new call will provide us with a new horizon ℎ″ ≥
ℎ′, and a new approximation 𝑑𝑘𝑦′ : [ℎ′, ℎ″] → 𝑌 . This is then repeated as often as needed to build a
larger approximation of the solution.

This sequential process allows a synchronous interpretation of an ODE solver as a discrete node. Rather
than producing a single function of continuous time, an ODE solver is a synchronous node that takes
in a stream of requested horizons and produces a stream of dense functions and associated horizons.

𝐷𝑒𝑛𝑠𝑒(𝐴) ≝ {ℎ : 𝑇𝑖𝑚𝑒; 𝑢 : [0, ℎ] → 𝐴}

The ODE solver, given a stream of requested horizons, produces a stream of dense solutions, and
operates on an internal state 𝑆, whose definition depends on the solver being used. Its reset parameter
is an initial value problem for a function 𝑦 : 𝑇𝑖𝑚𝑒 → 𝑌 , with an initial value 𝑦0 : 𝑌 such that 𝑦(0) =
𝑦0, a maximum horizon 𝑠𝑡𝑜𝑝 : 𝑇𝑖𝑚𝑒 and a function 𝑓 : [0, 𝑠𝑡𝑜𝑝] → 𝑌 → 𝑌 ′ computing the derivative
of 𝑦 (that is, 𝑑𝑦

𝑑𝑡 (𝑡) = 𝑓(𝑡, 𝑦(𝑡)) for all 𝑡 ∈ [0, 𝑠𝑡𝑜𝑝]):

𝐼𝑉𝑃(𝑌 , 𝑌 ′) ≝ {𝑦0 : 𝑌 ; 𝑠𝑡𝑜𝑝 : 𝑇𝑖𝑚𝑒; 𝑓 : [0, 𝑠𝑡𝑜𝑝] → 𝑌 → 𝑌 ′}

When simulating a continuous&time model 𝑚, this initial value problem is obtained using the model’s
initial state and 𝑑𝑒𝑟 function, composed with the current input 𝑖 (i.e. 𝑓(𝑡, 𝑠) = 𝑑𝑒𝑟(𝑖(𝑡), 𝑠)). An ODE
solver can thus be considered as a particular kind of discrete node:

𝐶𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑌 ′, 𝑆) ≝ 𝐷𝑁𝑜𝑑𝑒(𝑇𝑖𝑚𝑒, 𝐷𝑒𝑛𝑠𝑒(𝑌), 𝐼𝑉𝑃(𝑌 , 𝑌 ′), 𝑆)

A continuous&time signal of type 𝑉 is now represented as a stream of interval&defined functions, that is,
a function from ℕ to 𝐷𝑒𝑛𝑠𝑒(𝑉). Successive values in the stream are interpreted as successive intervals
on the time domain. Given a stream of dense functions 𝑣 : ℕ → 𝐷𝑒𝑛𝑠𝑒(𝑉), the corresponding signal
𝑤 : 𝑇𝑖𝑚𝑒 → 𝑉 is defined as

⁵The notation 𝑑𝑘𝑦 and the name dense solution are taken from the Sundials CVODE interface.

7

𝑤(𝑡) =
{{
{
{{𝑣0#𝑢(𝑡) if 𝑡 ∈ [0, 𝑒0]

𝑣𝑛#𝑢(𝑡 − 𝑒𝑛−1) if 𝑡 ∈ (𝑒𝑛−1, 𝑒𝑛] for some 𝑛 > 0
undefined otherwise

𝑒𝑛 = ∑
𝑛

𝑖=0
𝑣𝑖#ℎ

where 𝑒𝑛 is the stream of instants at which the solver stops. We assume dense functions to be
continuous on their domain. However, nothing prevents discontinuities from occurring at the joining
points of the stream, that is, for the stream 𝑠 above, we might have that 𝑠𝑛#𝑢(𝑠𝑛#ℎ) ≠ 𝑠𝑛+1#𝑢(0).
The ODE solver does not itself introduce discontinuities; the only discontinuities in the system are
those introduced by the input signal.

2.3.2 Interferences
It is important to note that the solver approximates solutions to the entire initial value problem at
once. That is, if the initial value problem is composed of two or more unrelated ODEs (in the sense
that they operate on distinct sets of variables), the solver does not consider these ODEs separately;
rather, it computes approximations to the entire system at once. This can lead to some unexpected
behaviour. Some solvers, such as Sundials CVODE, adapt their step length according to the system
being approximated. If given a particularly “steep” curve (say, a sine wave with a high frequency),
the step length is shortened to mitigate errors; instead, if given a “gentler” curve, the step length is
lengthened to increase efficiency. Of course, the approximation obtained depends on the length of the
integration steps the solver performs; integrating the same curve with different step lengths yields
different results.

The addition of a new, unrelated ODE to a pre&existing system can then alter the results obtained for
this system. If the newly added ODE is “steep”, the solver reduces its step length to mitigate error,
and computes an approximation for the entire system using this new step length. This differs from the
steps the solver would have taken had the new ODE not been included; and so, the results obtained
for the rest of the system are different. This is particularly important: the simultaneous integration of
two unrelated systems yields different results from their integration in isolation⁶.

Of course, one could consider a different approximation method, where each ODE is integrated
independently with its own ODE solver, rather than all together as a whole system. This is called
distributed simulation, and while it solves the issue of interference between unrelated systems, it raises
other difficulties and performance concerns, and is more difficult to implement. Zélus chooses instead
to live with the consequences of using a single solver for the entire system.

2.3.3 Solver Steps and Simulation Steps
The simulation of a continuous&time system with an ODE solver is now considered as a synchronous
node. Rather than continuous&time signals, it operates on streams of interval&defined functions. At
each step, it takes the value provided by its input signal, initializes the ODE solver with an appropriate
initial state and derivative function, and performs a step of the solver to obtain an approximation of the
solution to the initial value problem. It then uses this approximation and the model’s output function
to build an output value.

Since the ODE solver does not necessarily reach the requested horizon in a single step, the simulation
may need to execute several steps of the underlying solver for each dense function provided as input.
That is, for an input value defined on the time interval [0, ℎ], the ODE solver produces a list of
approximations such that their “concatenation” represents the solution over the full interval [0, ℎ],
with each item in the list being the result of a step of the solver. Since the ODE solver does not introduce
discontinuities, it is safe to consider this concatenation as a single continuous function.

⁶An example of this interference can be found at https://www.codeberg.org/17maiga/hsim, in the exm/zelus/
parallel folder.

8

https://www.codeberg.org/17maiga/hsim

Unfortunately, some ODE solvers (such as Sundials CVODE) work in such a way that stepping the
solver multiple times per step of the simulation is infeasible. Solvers operate on an internal state (in
Sundials CVODE, this is called a session), and the approximation returned by a step of the solver
depends on this internal state. Some solvers rewrite this internal state in&place during a step, invali&
dating previously produced approximations. We cannot then step the solver multiple times, as all but
the last approximation produced will be unusable. But stepping the solver once per simulation step
would mean that the solver would have to store its input values until the solver is ready to work on
them, which we cannot do either: the input stream might be the output of another simulation, in which
case all but the latest input value would be unusable as well.

To solve this conundrum, we wrap the dense functions in our stream with an option type, representing
the “readiness” of the simulation to accept a new input value.

𝑂𝑝𝑡𝑖𝑜𝑛(𝑉) ≝ 𝑉 ∪ {𝑁𝑜𝑛𝑒} 𝑆𝑖𝑔𝑛𝑎𝑙(𝑉) ≝ 𝑂𝑝𝑡𝑖𝑜𝑛(𝐷𝑒𝑛𝑠𝑒(𝑉))

Rather than stepping the solver multiple times per step of the simulation, we step the solver once, and
return the output up to the horizon reached by the solver. If the solver has not reached the input’s
horizon, we perform another step, giving 𝑁𝑜𝑛𝑒 as input to the simulation, and do so until the solver
reaches the input’s horizon, after which the simulation simply returns 𝑁𝑜𝑛𝑒. Once this occurs, it is
safe to provide a new dense function as input and begin integration again.

The simulation can then take as input as many 𝑁𝑜𝑛𝑒 values as necessary for the solver to “have time”
to reach the horizon of the input. The input stream must then contain as many successive 𝑁𝑜𝑛𝑒 as
needed after a dense function for the solver to reach the horizon requested by this dense function. The
simulation assumes the input signal takes this form; if a new input value is provided to the simulation
before it is done integrating the previous one, no guarantee is made on the correctness of the results.

The simulation of a continuous&time model with a solver is then a special case of a discrete node, with
a complex internal state 𝑆:

𝑐𝑠𝑖𝑚 : 𝐶𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑆𝑀 , 𝑆′
𝑀) → 𝐶𝑆𝑜𝑙𝑣𝑒𝑟(𝑆𝑀 , 𝑆′

𝑀 , 𝑆𝑆) →
𝐷𝑁𝑜𝑑𝑒(𝑆𝑖𝑔𝑛𝑎𝑙(𝐼), 𝑆𝑖𝑔𝑛𝑎𝑙(𝑂), 𝑈𝑛𝑖𝑡, 𝑆𝑖𝑔𝑛𝑎𝑙(𝐼) × 𝑆𝑀 × 𝑆𝑆)

A step of the simulation can take three forms, depending on its input and on the state of the simulation.
If the input is a new dense function, we assume we are done integrating the previous input. We reset
the solver to take into account the new input value in the initial value problem (the model’s derivative
function uses the input, and so the derivative function given to the solver must change). If the input
is 𝑁𝑜𝑛𝑒 and we are not done integrating, we call the solver again and use the approximation returned
to build a dense value for the output stream. If the input is 𝑁𝑜𝑛𝑒 and we are done integrating, we do
nothing: the simulation is waiting for the next input value. A possible implementation in OCaml is
given in Listing 4.

2.4 Hybrid Models
Continuous&time models allow for precise descriptions of physical systems and continuous behaviours.
However, they lack the ability to describe discrete events. For instance, consider the model of a
bouncing ball. We can describe its behaviour in the air with two ODEs for the ball’s position 𝑦 (the
distance from the ground) and speed 𝑦′:

𝑑𝑦
𝑑𝑡

(𝑡) = 𝑦′(𝑡) 𝑑𝑦′

𝑑𝑡
(𝑡) = −𝑔

where 𝑔 is the gravitational constant (𝑔 ≈ 9.81). Coupled with an initial position and speed, this
gives us our initial value problem, which can be approximated as seen above. However, nothing here

9

(** Simulation of a continuous model, as a discrete node. *)
let csim (CNode model) (DNode solver) =
 let s0 = (None, model.s0, solver.s0) in
 let step (current_input, mstate, sstate) new_input =
 match (new_input, current_input) with
 | (Some input, None) ->
 let ivp_f t m = model.fder (input.u t) m in
 let ivp = { y0=mstate; f=ivp_f; h=input.h } in
 None, (Some i, mstate, solver.reset sstate ivp)
 | (None, Some input) ->
 let ({h; u=dky}, sstate) = solver.step sstate input.h in
 let u t = model.fout (input.u t) (dky t) in
 let current_input = if h >= input.h then None else current_input in
 Some {h; u}, (current_input, dky h, sstate)
 | (None, None) -> None, (None, ms, ss)
 | (Some _, Some _) -> assert false in
 let reset (_, ms, ss) () = (None, model.y0, solver.y0) in
 DNode { s0; step; reset }

Listing 4: Continuous simulation in OCaml

describes the ball’s bouncing behaviour as it touches the ground: it will fall until the end of time. We
would ideally like to identify the instant at which the ball touches the ground, stop the simulation at
this instant, and perform some changes to the model state to represent the impact of the bounce (say,
negate the speed and scale it by a constant), before resuming the simulation with the updated state.

The question of discrete events comes up whenever we wish to include discrete behaviour in a
continuous model, such as when modelling the interaction of a discrete program with its physical
environment. A controller for a water heater, for instance: the controller turns on or off the heating
(discrete change) based on the water’s temperature (continuous change). Since discrete models do not
include any notion of time, and simply work on the sequence of values they are given, nothing tells
us when, in continuous time, we should perform discrete steps. There are many possible choices. We
could, for instance, pick a step length 𝑝 and say that the discrete step is performed periodically at every
𝑝. In practice, hybrid system modelers like Simulink and Zélus use zero�crossings. They monitor a
certain value during simulation, and perform a discrete step whenever this value changes from strictly
negative to positive or null.

More formally, a zero&crossing on a function 𝑧 : [0, ℎ] → ℝ occurs at time 𝑡 ∈ [0, ℎ] if any of the
following conditions are met:

(𝑧(𝑡 − 𝜀) < 0) ∧ (𝑧(𝑡) > 0)
∨ (𝑧(𝑡 − 𝜀) < 0) ∧ (𝑧(𝑡) = 0) ∧ (𝑧(𝑡 + 𝜀) ≥ 0)
∨ (𝑧(𝑡 − 𝜀) = 0) ∧ (𝑧(𝑡) = 0) ∧ (𝑧(𝑡 + 𝜀) > 0)

with 𝜀 ∈ 𝑇𝑖𝑚𝑒 a strictly positive, solver&dependent constant representing the maximum precision of
the zero&crossing detection mechanism⁷ (see Section 2.5).

An important point is that discrete events should take no time to execute. The physical time of the
model does not change during discrete steps. This is similar to the approach of the synchronous
languages, where the execution of a step is considered to be instantaneous. Additionally, multiple
discrete steps may occur directly after one another. The time basis should reflect this: if we use 𝑇𝑖𝑚𝑒 =
ℝ+, successive discrete steps would occur at the same time, and we have no way to distinguish the

⁷For instance, if the zero&crossing mechanism represented time with floating&point numbers, a sensible choice for 𝜀
could be epsilon_float.

10

order of execution, or even represent as a function whose codomain is a single value. In the superdense
semantics of [LZ05], the time basis is the set ℝ+ × ℕ, ordered lexicographically ((𝑡1, 𝑛1) < (𝑡2, 𝑛2)
iff 𝑡1 < 𝑡2 or 𝑡1 = 𝑡2 ∧ 𝑛1 < 𝑛2)⁸. At each physical instant 𝑡 : ℝ+, any number 𝑛 of discrete steps
may occur in successive logical instants (𝑡, 0), (𝑡, 1), …, (𝑡, 𝑛). In our stream representation of signals,
discrete instants are instead represented by dense functions with horizon ℎ = 0 (that is, defined on
the interval [0, 0]). The order of execution of successive discrete steps is simply the order given by
the stream⁹.

A hybrid model describes such systems whose behaviour goes through both continuous and discrete
phases. Its state 𝑆 contains both discrete and continuous parts: the continuous part 𝑌 is defined by
ODEs, and evolves during continuous phases, while the discrete part is only modified during discrete
steps, and must be constant during continuous phases¹⁰. The model defines functions 𝑐𝑔𝑒𝑡 : 𝑆 → 𝑌
and 𝑐𝑠𝑒𝑡 : 𝑆 → 𝑌 → 𝑆 to get and set the continuous state 𝑌 from the whole state 𝑆. To handle
zero&crossings, a model with input signal 𝐼 defines a zero&crossing function 𝑧𝑒𝑟𝑜 : 𝑆 → 𝐼 → 𝑌 → 𝑍𝑜,
where 𝑍𝑜 is a vector of values to be monitored for zero&crossings. The inner state 𝑆 also maintains
a vector of Boolean flags 𝑍𝑖, representing the events corresponding to the values in 𝑍𝑜 (a flag is set
to true if its corresponding event has occured), and a function 𝑧𝑠𝑒𝑡 : 𝑆 → 𝑍𝑖 → 𝑆 to update the state
when an event has been detected.

For implementation reasons, a hybrid model also defines two additional functions 𝑗𝑢𝑚𝑝 : 𝑆 → 𝔹 and
ℎ𝑜𝑟𝑖𝑧𝑜𝑛 : 𝑆 → 𝑇𝑖𝑚𝑒. The ℎ𝑜𝑟𝑖𝑧𝑜𝑛 function allows a model to provide a horizon after which no further
integration must occur. This is used to indicate whether or not the simulation, after a discrete step,
must perform another discrete step (the horizon is 0 in this case); and for the period construct, which
represents a recurring discrete event. The 𝑗𝑢𝑚𝑝 function is used to indicate whether or not a discrete
step has introduced a discontinuity in the model’s state: if so, the solver must be reset to take this
change into account. These two functions exist mainly for implementation purposes: see Section 2.6
for more details.

Finally, a hybrid model defines all functions required by discrete and continuous models:

𝐻𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆, 𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜) ≝ {𝑠0 : 𝑆;
𝑐𝑔𝑒𝑡 : 𝑆 → 𝑌 ; 𝑐𝑠𝑒𝑡 : 𝑆 → 𝑌 → 𝑆; 𝑧𝑠𝑒𝑡 : 𝑆 → 𝑍𝑖 → 𝑆;
𝑠𝑡𝑒𝑝 : 𝑆 → 𝐼 → 𝑍𝑖 → 𝑂 × 𝑆; 𝑑𝑒𝑟 : 𝑆 → 𝐼 → 𝑌 → 𝑌 ′;
𝑜𝑢𝑡 : 𝑆 → 𝐼 → 𝑌 → 𝑂; 𝑧𝑒𝑟𝑜 : 𝑆 → 𝐼 → 𝑌 → 𝑍𝑜;
𝑟𝑒𝑠𝑒𝑡 : 𝑆 → 𝑅 → 𝑆; ℎ𝑜𝑟𝑖𝑧𝑜𝑛 : 𝑆 → 𝑇𝑖𝑚𝑒; 𝑗𝑢𝑚𝑝 : 𝑆 → 𝔹}

⁸This is not the only possible choice; for instance, in [Ben+12], the semantics of hybrid systems is expressed using
non&standard analysis, and the time basis is the set of hyperreals ∗ℝ.

⁹The interpretation of a stream of dense functions 𝑥 : ℕ → 𝐷𝑒𝑛𝑠𝑒(𝑉) as a function of superdense time 𝑤 : (ℝ+ ×
ℕ) → 𝑉 is then defined through the following recursive functions:

𝑓(𝑡, 𝑛, 𝑥, 𝑖) =
{{
{
{{𝑥𝑖#𝑢(𝑡) if 𝑡 < 𝑥𝑖#ℎ

𝑔(𝑥𝑖#𝑢(0), 𝑛 − 1, 𝑥, 𝑖 + 1) if 𝑡 = 𝑥𝑖#ℎ
𝑓(𝑡 − 𝑥𝑖#ℎ, 𝑛, 𝑥, 𝑖 + 1) otherwise

𝑔(𝑣, 𝑛, 𝑥, 𝑖) =
{{
{
{{𝑣 if 𝑛 = 0

𝑥𝑖#𝑢(0) if 𝑥𝑖#ℎ ≠ 0
𝑔(𝑥𝑖#𝑢(0), 𝑛 − 1, 𝑥, 𝑖 + 1) otherwise

𝑤(𝑡, 𝑛) = 𝑓(𝑡, 𝑛, 𝑥, 0)

The stream representation is quite similar to the hybrid sequences of [Kay+11, sec. 3.4].
¹⁰This restriction is enforced by typing: see [BP13] for more details.

11

let hybrid ball(y0, y'0) = y where
 rec der y = y' init y0
 and der y' = -9.81 init y'0 reset z -> -0.8 *. last y'
 and z = up(-. y)

Listing 5: The bouncing ball in Zélus

Zélus provides several ways to specify zero&crossing events, of which the up(e) construct is the most
common. It monitors its subexpression e for zero&crossings, and triggers an event whenever a zero&
crossing occurs on e. Constructs like present and reset allow models to execute discrete behaviour
when an event is triggered. These constructs are compiled down to an internal representation quite
similar to 𝐻𝑁𝑜𝑑𝑒 (see [Bou+15] for more details). Continuous&time models are a special case of hybrid
ones, where the discrete step function does not do anything, and the zero&crossing function does not
monitor any signals; and Zélus compiles them down to the same internal representation.

Going back to our bouncing ball, we monitor the expression −𝑦 for zero&crossings. Whenever this
expression becomes positive, the ball touches the ground. When this zero&crossing event is triggered,
we represent the effect of the bounce by negating the speed, so that the ball starts moving up again,
and decreasing it by a small factor, to represent the loss of inertia from the collision. A possible
implementation in Zélus is given in Listing 5. Whenever the zero&crossing event z occurs, y' is negated
and scaled down; the notation last y' represents the left&limit of y'.

2.5 Zero-crossing Detection
The monitoring of the zero&crossing expressions 𝑍𝑜 requires a mechanism to detect zero&crossings,
termed a zero&crossing solver. This solver, given a function 𝑔 : 𝑇𝑖𝑚𝑒 → 𝑌 → 𝑍𝑜 computing a vector
of values to be monitored for zero&crossing, an initial value 𝑦0 : 𝑌 , and a dense function 𝑦 : 𝐷𝑒𝑛𝑠𝑒(𝑌)
defined up to a horizon ℎ : 𝑇𝑖𝑚𝑒, attempts to locate the first occurrence of a zero&crossing event on the
interval [0, ℎ]. Multiple methods exist; one of the oldest and most used methods is the Illinois method
[Sny53], used by default in Simulink and reimplemented in Zélus. In general, the zero&crossing solver
can be summarized as providing a function

𝑧𝑠𝑜𝑙𝑣𝑒 : (𝑇𝑖𝑚𝑒 → 𝑌 → 𝑍𝑜) → 𝐷𝑒𝑛𝑠𝑒(𝑌) → 𝑇𝑖𝑚𝑒 × 𝑂𝑝𝑡𝑖𝑜𝑛(𝑍𝑖)

taking as input a zero&crossing function and a dense solution 𝑣, and returning a pair of a horizon ℎ ∈
[0, 𝑣#ℎ] and an optional vector of Boolean flags 𝑧, such that if the zero&crossing solver detects one or
more zero&crossing events, ℎ is the earliest instant at which a zero&crossing occurs, and 𝑧 is not null;
otherwise, ℎ = 𝑣#ℎ, and 𝑧 is null.

Similarly to the ODE solver, a zero&crossing solver can be seen as a synchronous node. Since the zero&
crossing function does not change during continuous behaviour (it takes as argument the continuous
part of the state, and the discrete part is considered constant during integration), it may be used as a
reset parameter; the input is a stream of dense solutions, and the output is a stream of pairs of reached
horizons and optional zero&crossings.

𝑍𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑍𝑖, 𝑍𝑜, 𝑆) ≝ 𝐷𝑁𝑜𝑑𝑒(𝐷𝑒𝑛𝑠𝑒(𝑌), 𝑇𝑖𝑚𝑒 × 𝑂𝑝𝑡𝑖𝑜𝑛(𝑍𝑖), 𝑇𝑖𝑚𝑒 → 𝑌 → 𝑍𝑜, 𝑆)

2.5.1 Combining with an ODE solver
A zero&crossing solver may be combined with an ODE solver to obtain the full solver mechanism
used by the simulation of a hybrid system. This full solver both performs approximation of the
solution to the initial value problem of the model, as well as zero&crossing detection using this
approximation. That is, given an ODE solver 𝑐𝑠 : 𝐶𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑌 ′, 𝑆𝐶) and a zero&crossing solver
𝑧𝑠 : 𝑍𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑍𝑖, 𝑍𝑜, 𝑆𝑍), their composition takes the form of a new synchronous node 𝑠 :
𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜, 𝑆𝐶 × 𝑆𝑍), where

12

Start D C

cascade
no cascade

no zero&crossing

zero&crossing
Figure 3: Overview of the simulation loop; 𝐷 and 𝐶 represent discrete and continuous step modes

𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜, 𝑆) ≝ 𝐷𝑁𝑜𝑑𝑒(𝑇𝑖𝑚𝑒, 𝐷𝑒𝑛𝑠𝑒(𝑌) × 𝑂𝑝𝑡𝑖𝑜𝑛(𝑍𝑖), 𝐼𝑉𝑃(𝑌 , 𝑌 ′) × 𝑍𝐶𝑃(𝑌 , 𝑍𝑜), 𝑆)

A step of the full solver 𝑠 takes in a horizon ℎ : 𝑇𝑖𝑚𝑒. It then performs a step of the underlying ODE
solver 𝑐𝑠 with input ℎ, obtaining a dense function 𝑣 defined up to a horizon ℎ′ ≤ ℎ approximating the
solution of the initial value problem, and uses this dense function as input to the zero&crossing solver
𝑧𝑠, which returns a new horizon ℎ″ ≤ ℎ′ and an optional zero&crossing event 𝑧. The final horizon ℎ″

is then used as the horizon of 𝑣 (since 𝑣 is defined on [0, ℎ′] and ℎ″ ≤ ℎ′, then 𝑣 is defined on [0, ℎ″]).
Finally, it returns the dense function 𝑣 with horizon ℎ″ and the optional zero&crossing event 𝑧.

𝑠#𝑠𝑡𝑒𝑝 (ℎ) ≝ (𝑣′, 𝑧) where 𝑣 = 𝑐𝑠#𝑠𝑡𝑒𝑝 (ℎ), (ℎ′, 𝑧) = 𝑧𝑠#𝑠𝑡𝑒𝑝 (𝑣) and 𝑣′ = {ℎ = ℎ′, 𝑢 = 𝑣#𝑢}

The full solver mechanism is then paired with a hybrid model to construct a node representing the
simulation of the model.

2.6 The Simulation Algorithm
The simulation of a full hybrid model 𝑚 : 𝐻𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆𝑀 , 𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜) with a solver 𝑠 :
𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜, 𝑆𝑆) can also be seen as a synchronous node, operating on streams of dense
functions. Simulation steps take two forms: discrete steps perform state changes and side effects, and
continuous steps approximate the solution to the initial value problem of the model and monitors for
zero&crossing events. The simulation alternates between these two modes as needed, switching from
continuous to discrete steps if a zero&crossing event occurs, and from discrete to continuous steps if no
additional discrete steps are necessary. A high&level overview of the simulation’s behaviour is given
in Figure 3.

The simulation’s internal state stores five things: the internal states 𝑠𝑚 : 𝑆𝑀 and 𝑠𝑠 : 𝑆𝑆 of the model
and solver, respectively; the current simulation 𝑚𝑜𝑑𝑒 (either idle, discrete or continuous); a Boolean
flag 𝑟 indicating whether we should reset the solver before the next continous step (see Section 2.6.3);
the current input 𝑖 : 𝑂𝑝𝑡𝑖𝑜𝑛(𝐷𝑒𝑛𝑠𝑒(𝐼)); and the current simulation time with respect to the input’s
domain 𝑛𝑜𝑤 ∈ [0, 𝑖#ℎ], used in discrete steps to obtain the correct input. We use the same trick as
with continuous&time models to solve the problem of the ODE solver taking several steps to integrate
a single input value: we ask that the input stream contains enough successive 𝑁𝑜𝑛𝑒 values for the
ODE solver to finish integrating the current input value (as explained in Section 2.3).

𝑆𝑡𝑎𝑡𝑒(𝑆𝑀 , 𝑆𝑆, 𝐼) = {𝑠𝑚 : 𝑆𝑀 ; 𝑠𝑠 : 𝑆𝑆; 𝑚𝑜𝑑𝑒 : 𝑀𝑜𝑑𝑒; 𝑟 : 𝔹; 𝑖 : 𝑂𝑝𝑡𝑖𝑜𝑛(𝐷𝑒𝑛𝑠𝑒(𝐼)); 𝑛𝑜𝑤 : [0, 𝑖#ℎ]}

The simulation of a hybrid system is then a discrete node on streams:

ℎ𝑠𝑖𝑚 : 𝐻𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆𝑀 , 𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜) → 𝑆𝑜𝑙𝑣𝑒𝑟(𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜, 𝑆𝑆) →
𝐷𝑁𝑜𝑑𝑒(𝑆𝑖𝑔𝑛𝑎𝑙(𝐼), 𝑆𝑖𝑔𝑛𝑎𝑙(𝑂), 𝑅, 𝑆𝑡𝑎𝑡𝑒(𝑆𝑀 , 𝑆𝑆, 𝐼))

Its step function’s behaviour varies depending on the simulation mode; the following sections describe
these behaviours in more details.

13

2.6.1 Discrete steps
A discrete step occurs whenever a zero&crossing event is triggered or a new value is obtained by the
simulation. Zero&crossing events may be triggered in two different ways: either by detection using
the zero&crossing solver during a previous continuous step, or resulting from the action of a previous
discrete step as indicated by ℎ𝑜𝑟𝑖𝑧𝑜𝑛. New input values require a discrete step to be performed in
order to reset the underlying solver. Discrete steps may modify the entire model state, and perform
side effects. The simulation’s physical time does not advance during a discrete step.

A discrete step of the simulation simply calls the model’s 𝑠𝑡𝑒𝑝 function with the appropriate inputs,
constructs a dense function defined on [0, 0] using the output (as described in Section 2.4, this
represents a discrete step), and updates the simulation state as needed for the next step. Four possible
situations arise. If the model’s indicated horizon (obtained with the ℎ𝑜𝑟𝑖𝑧𝑜𝑛 function defined by the
model) requires us to perform another discrete step, we keep the simulation in discrete mode. If no
other discrete step must be performed, but we are done integrating the current input (the current time
𝑛𝑜𝑤 is greater than or equal to the current input’s horizon 𝑖#ℎ), we cannot proceed further, and must
wait for additional input; and so we switch to idle mode. If no other discrete step must be performed
and we have not reached the input’s horizon, we switch to continuous mode. In this case, we may have
to reset the solver. This occurs if the current discrete step has caused a discontinuity (as indicated by
the model’s 𝑗𝑢𝑚𝑝 function), or if the state’s reset flag 𝑟 is set, in which case we build out a new initial
value problem and zero&crossing problem using the current model state and reset the solver.

A possible implementation of the discrete step in OCaml is given in Listing 6 as the dstep function.

2.6.2 Continuous steps
Continuous steps advance time, approximate the solution to the model’s initial value problem using
the ODE solver, and monitor the model’s zero&crossing function for zero&crossing events using the
zero&crossing solver. They operate on a restricted part of the model’s state; only the continuous part
of the state may be modified, and the discrete part is constant. Furthermore, no side&effects may occur
during continuous steps. These restrictions are enforced by a typing pass during the compilation
process [Bou+15].

A continuous step performs a call to the solver to obtain both an approximation of the solution to
the model’s initial value problem and an optional zero&crossing event. It builds a dense function repre&
senting the output on the approximation’s domain using the model’s 𝑜𝑢𝑡 function. Then, it updates
the simulation state as needed for the next step. Once again, four possible situations arise. If a zero&
crossing event has occured, we must perform a discrete step, and so we switch to discrete mode and
update the model’s state to take into account the zero&crossing event with the 𝑧𝑠𝑒𝑡 function. If no zero&
crossing event has occurred, but we have reached the end of the current input (the horizon reached by
the solver is greater than or equal to the current input’s horizon), we must perform a discrete step as
well, and so we switch to discrete mode. If no zero&crossing event has occured and we have not reached
the current input’s horizon, but we have reached the model’s desired stopping point (as indicated by
the model’s ℎ𝑜𝑟𝑖𝑧𝑜𝑛 function), we must again perform a discrete step, and so we switch to discrete
mode. Otherwise, we can continue integrating; we keep the simulation mode as continuous.

A possible implementation of the continuous step in OCaml is given in Listing 6 as the cstep function.

2.6.3 Complete definition
The full step function then performs the correct kind of step depending on the simulation mode; if the
mode is Idle, it simply returns 𝑁𝑜𝑛𝑒 and the unmodified state. When a new dense function is provided
as input, it updates the current input and time, sets the reset flag, and switches to discrete mode. Once

14

again, it expects the input stream to contain as many successive 𝑁𝑜𝑛𝑒 values as needed for the solver
to integrate the entire input, as explained in Section 2.3.

The simulation’s reset function simply resets the model using its 𝑟𝑒𝑠𝑒𝑡 function, sets the simulation
mode to Idle, and sets the reset flag 𝑟 in the simulation state, so that the next discrete step resets the
solver before integration.

Finally, its initial state is simply the initial states of the model and solver, the mode set to idle, an empty
current input (𝑁𝑜𝑛𝑒) and a current time set at 0.

Its implementation in OCaml is given in Listing 6.

2.7 Implementation Details
While the above algorithm works, it suffers from a few flaws which limit its efficiency. Indeed, resetting
the solver at every new input value is counterproductive. ODE solvers with adaptive step lengths (such
as Sundials CVODE) begin integration by performing very small steps in time, and increase their step
length later, as they obtain more information on the function they are currently integrating. Resetting
the solver slows down the progress of the simulation, as such ODE solvers will perform shorter steps
than if they had not been reset.

If two successive input values can be considered to be continuous (that is, the second one only extends
the first, with no discontinuity at the joining point), there is no particular reason why we should reset
the solver. This occurs for instance between successive continuous steps. The ODE solver does not
itself introduce discontinuities, and so the simulation should not reset its solver if taking as input
two successive continuous steps of an ODE solver. As a first solution, we can equip our dense values
with an additional bit of information 𝑐 representing whether the next value in the stream is simply an
extension of themselves:

𝐷𝑒𝑛𝑠𝑒(𝑉) ≝ {ℎ : 𝑇𝑖𝑚𝑒; 𝑢 : [0, ℎ] → 𝑉 ; 𝑐 : 𝔹}

When building the output value, the simulation knows how this output value behaves compared to
the next one: if we just performed a continuous step and the next step is also continuous, we know
that the next output value will simply be an extension of the current one, and we can include this
information in the current output value. In all other cases, it is safe to consider that successive values
are discontinuous. When a simulation receives an input value, it can then reset the solver only if
necessary.

Another issue comes from the impossibility of stepping the solver more than once per step of the
simulation, as seen in Section 2.3. Since adaptive solver begin with small integration steps, output
values will be defined on small intervals. If we compose simulations together, the resulting output
will be defined on smaller and smaller intervals, even though this is not always necessary, as the ODE
solvers do not introduce discontinuities between their steps.

We can impose another restriction on our ODE solvers to mitigate this issue. If the solver provides a
function to copy its internal state, allowing us to preserve the validity of the previous approximations,
we can safely step the solver multiple times per step of the simulation and concatenate the results.
A discrete node with state copies operating on a state 𝑆 defines an additional function 𝑐𝑜𝑝𝑦 : 𝑆 →
𝑆 returning a copy of the inner state, which may be used for the rest of the simulation. Previously
computed approximations then depend on the original copy of the state, which remains untouched by
later steps.

𝐷𝑁𝑜𝑑𝑒𝐶(𝐼, 𝑂, 𝑅, 𝑆) ≝ {𝑠0 : 𝑆; 𝑠𝑡𝑒𝑝 : 𝑆 → 𝐼 → 𝑂 × 𝑆; 𝑟𝑒𝑠𝑒𝑡 : 𝑆 → 𝑅 → 𝑆; 𝑐𝑜𝑝𝑦 : 𝑆 → 𝑆}

15

(** Discrete simulation step. *)
let dstep (HNode model) (DNode solver) state =
 let i = Option.get state.i in
 let (o, sm) = model.step state.sm (i.u state.now) in
 let state =
 if model.horizon sm <= 0 then { state with sm }
 else if state.now >= i.h then { state with mode=Idle; i=None; sm }
 else if model.jump sm || state.r then (* Reset solver. *)
 let ivp = { h=i.h; y0=model.cget sm; f=fun t y -> model.fder sm (i.u t) y } in
 let zcp = { y0=model.cget sm; f=fun t y -> model.fzer sm (i.u t) y } in
 let ss = solver.reset (ivp, zcp) state.ss in
 { state with mode=Continuous; sm; ss; r=false }
 else { state with mode=Continuous; sm } in
 (Some { h=0.0; u=fun _ -> o }, state)

(** Continuous simulation step. *)
let cstep (HNode model) (DNode solver) state =
 let i = Option.get state.i in
 let stop = min (model.horizon state.sm) i.h in
 let (({ h=now; u=dky }, z), ss) = solver.step state.ss stop in
 let sm = model.cset state.sm (dky now) in
 let out = { h=now; u=fun t -> model.fout sm (i.u t) (dky t) } in
 let state = match z with
 | Some z ->
 let sm = model.zset sm z in
 { state with mode=Discrete; sm; ss; now }
 | None ->
 if model.horizon sm <= 0.0 || now >= i.h
 then { state with mode=Discrete; sm; ss; now }
 else { state with mode=Continuous; sm; ss; now } in
 (Some out, state)

(** Complete simulation algorithm. *)
let hsim (HNode model) (DNode solver) =
 let s0 = { mode=Idle; i=None; now=0.0; sm=model.s0; ss=solver.s0; r=true } in
 let step state i = match (i, state.mode) with
 | Some _, Idle ->
 let state = { state with mode=Discrete; i; now=0.0; r=true } in
 dstep (HNode model) (DNode solver) state
 | None, Discrete -> dstep (HNode model) (DNode solver) state
 | None, Continuous -> cstep (HNode model) (DNode solver) state
 | None, Idle -> (None, state)
 | Some _, _ -> assert false in
 let reset state r =
 { state with mode=Idle; sm=model.reset r state.sm; r=true } in
 DNode { s0; step; reset }

Listing 6: Simulation of a hybrid model in OCaml

Given a solver with state copies, the simulation can then perform multiple steps of the solver,
performing a state copy in between each step and concatenating the approximations returned by the
solver. This concatenation 𝑗𝑜𝑖𝑛 : 𝐷𝑒𝑛𝑠𝑒(𝑉) × 𝐷𝑒𝑛𝑠𝑒(𝑉) → 𝐷𝑒𝑛𝑠𝑒(𝑉) is defined as expected:

𝑗𝑜𝑖𝑛(𝑙, 𝑟) = {ℎ = 𝑙#ℎ + 𝑟#ℎ; 𝑢 = 𝜆𝑡. if 𝑡 ≤ 𝑙#ℎ then 𝑙#𝑢(𝑡) else 𝑟#𝑢(𝑡 + 𝑙#ℎ)}

16

This does not free us from the option type in our signals, however; the simulation may still produce
more than one dense function as output per dense function as input (for instance, if a zero&crossing
event occurs).

2.8 Lifting the Runtime
An interesting consequence of interpreting simulations as discrete nodes is that we can reasonably
consider manipulating them directly inside the language. This takes the form of a module in Zélus’
standard library, providing several primitives and utility functions to create and manipulate simula&
tions and signals. For instance, the function

 val solve : ('i -C-> 'o) -S-> ('i signal -D-> 'o signal)

takes as input a continuous&time model (this is indicated by the -C-> arrow) from 'i to 'o and
producing a discrete&time node (indicated by the -D-> arrow) from 'i signal to 'o signal¹¹. It
represents the simulation with a dedicated instance of an ODE solver of its argument; that is, the ODE
solver used to simulate the argument of solve is separate from the one used for the rest of the program.
We can now choose which parts of our program we wish to simulate in isolation from the rest. The
primitives compose and synchr, whose signatures are

 val compose :
 ('a signal -D-> 'b signal) -S->
 ('b signal -D-> 'c signal) -S->
 ('a signal -D-> 'c signal)

 val synchr :
 ('a signal -D-> 'b signal) -S->
 ('a signal -D-> 'c signal) -S->
 ('a signal -D-> ('b * 'c) signal)

allow for the composition and synchronization of independent simulations. Indeed, standard compo&
sition of simulations does not work: the output of the first would not take into account that the second
simulation requires 𝑁𝑜𝑛𝑒 values as input until it is done integrating its current input. We need to
ensure that this requirement is met. This is simple: to simulate 𝑓⚬𝑔, step 𝑔 and then 𝑓 when 𝑓 is done
integrating (i.e. when 𝑓 returns 𝑁𝑜𝑛𝑒), otherwise only step 𝑓 . Furthermore, two simulations will not
necessarily advance at the same speed, and a synchronization primitive is required to simulate two
systems in parallel. Its behaviour is simple: step only the simulation that has not progressed as far as
the other one, and return the solution only on the interval on which both are defined.

These two combinators have been implemented in OCaml, but it is interesting to note that both of
these could just as well be implemented in discrete Zélus, given the right tools to manipulate dense
functions (in particular, getting their horizon and splitting them into two smaller, successive dense
functions). One could even imagine that simulations themselves are implemented in Zélus; they are
only discrete nodes implementing a particular automaton, and discrete Zélus provides all of the
necessary constructs to implement automata. Given an interface allowing us to instanciate and call a
solver, this seems entirely feasible.

3 Hybrid Observers and Assertions
Expressing assertions on the state of a program is an established technique both for formal verification
and defensive, runtime checks [CR06; Hoa69]. We focus on runtime executable assertions; these are
executed along with the code to check a Boolean property, and interrupt the execution if the property
is not met. In OCaml, for instance, the assert instruction checks that a certain expression evaluates
to true at runtime, and raises an exception otherwise. This is an example of a defensive use of runtime
assertions as a way to avoid unwanted behaviour: the programmer chooses to suspend execution rather
than proceed with a state which they consider invalid.

¹¹Due to some restrictions in the higher&order facilities of Zélus, the argument to solve must be statically known (that
is, we must be able to allocate the necessary memory before starting the execution of the program); this is represented
by the -S-> arrow.

17

let node f (*...*) =
 let v = (*...*) in
 assert (
 let p = f_integr(0.0, v) in
 p >= 0.0
); v

let node assertion_f(v) =
 let p = f_integr(0.0, v) in
 p >= 0.0
let node f (*...*) =
 let v = (*...*) in
 let ok = assertion_f(v) in
 (v, ok)

Listing 7: A discrete assertion and its idealized translation as an observer.

let hybrid assertion_f(v) =
 let der p = v init 0.0 in
 up(-. p)
let hybrid f (*...*) =
 let v = (*...*) in
 let ok = assertion_f(v) in
 (v, ok)

Listing 8: A naïve implementation of a continuous observer.

An expected feature of run&time assertions is that they should not affect the rest of the computation
(except stopping execution when they are not fulfilled). We call them transparent, in the sense that,
running the program with or without assertions, if no error is raised, should produce the same result.
Of course, this property requires the expression evaluated in the assertion to not cause any visible side&
effects: in OCaml, if the assertion modifies mutable data or performs I/O operations, executing the
assertion is not transparent. Still, if the subexpression respects certain criteria, we can safely assume
that the presence of the assertion will not affect the final result.

In synchronous languages like Lustre, the equivalent of the run&time assertions of OCaml is an
observer: a node whose sole purpose is to monitor its input stream to check a certain property. Listing 7
gives an example of an assertion in discrete Zélus, and an idealized translation of this assertion into
a separate observer node. The assertion_f node monitors its input stream, and returns a Boolean
property (here, that a certain value, obtained by integrating another stream with the f_integr node
of Listing 2, is always positive), with no effect on the rest of the computation in f. The Boolean stream
is returned along with the output value of f, and the caller of f will propagate this information up to
the main node, where it can be monitored by the user.

In general, a discrete assertion on a model 𝑀 : 𝐷𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆) can be seen as another node whose
input stream is the state 𝑆 of the parent model, and whose output stream is a Boolean value; it defines
its own internal state, with its own local variables, subnodes, and so on and so forth. The parent model
then calls the assertion with its internal state during each step.

In continuous&time, one could imagine a similar way of encoding such behaviour. Listing 8 presents
a possible implementation of the behaviour of Listing 7 in continuous time. Rather than using
inequalities, which are considered discontinuous and are not allowed in continuous code, we use a
zero&crossing event to monitor the signal, and perform the appropriate side effect if the event occurs.
The integration is once again handled by the simulation, as described in Section 2.6.

Unfortunately, this implementation does not meet our criteria for assertions. Indeed, adding ODEs to
a model changes the approximation returned by the ODE solver, as explained in Section 2.3, even if
the new ODEs are entirely unrelated to the existing ones. The implementation in Listing 8 does not
separate the body of the assertion from its parent model, and the simulation runs both the model and
its assertion at the same time. Therefore, the assertion may impact the results of its parent model, and
is not transparent. We wish instead to simulate the assertion independently from its parent model,
with its own ODE solver.

18

3.1 Models With Assertions
Since an assertion can be considered as a separate model operating on the inner state of its parent
model, we can represent a model with assertions as a pair of the parent model 𝑚, operating on its
inner state 𝑆𝑀 , and a list of assertion models. All assertions operate on the same input datatype 𝑆𝑀
(the state of the parent model) and return Boolean output signals 𝔹.

𝐴𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆𝑀 , 𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜) ≝ {𝑚 : 𝐻𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆𝑀 , 𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜);

𝑎 : 𝐿𝑖𝑠𝑡(𝐴𝑁𝑜𝑑𝑒(𝑆𝑀 , 𝔹, 𝑅𝐴, 𝑆𝐴, 𝑌𝐴, 𝑌 ′
𝐴, 𝑍𝑖𝐴, 𝑍𝑜𝐴))}

Note that the output signal is Boolean even in continuous time. This is normally impossible in contin&
uous Zélus, except if the signal is constant during continuous phases; a Boolean signal changing during
continuous time could lead to discontinuities, and so operations like conditionals or Boolean operators
are rejected by a typing pass [BP13]. There are two possible interpretations of this Boolean output:
either assertions benefit from relaxed typing rules for their output, and are allowed a limited subset of
discrete behaviours in continuous time; or assertions in continuous time are defined in terms of zero&
crossing events, and as such the output of the assertion will be constant during continuous phases
(in fact, the output will be constantly true, as the simulation would not have entered a continuous
step otherwise). Both interpretations lead to the same updated simulation algorithm, as we will see
in Section 3.2. The 𝐴𝑁𝑜𝑑𝑒 datatype is recursive: indeed, nothing prevents assertions from containing
their own assertions, and so on and so forth.

While this representation allows for a lot of expressivity, in most cases, a model with a single assertion
suffices. Multiple assertions may be combined as a single one by simply taking the conjunction of their
outputs, and nested assertions (assertions within assertions) can be checked as part of the simulation
of their parents. We can then define a simpler datatype

𝐴𝑆𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆𝑀 , 𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜) ≝ {𝑚 : 𝐻𝑁𝑜𝑑𝑒(𝐼, 𝑂, 𝑅, 𝑆𝑀 , 𝑌 , 𝑌 ′, 𝑍𝑖, 𝑍𝑜);
𝑎 : 𝐷𝑁𝑜𝑑𝑒(𝑆𝑖𝑔𝑛𝑎𝑙(𝑆𝑀), 𝔹, 𝑅, 𝑆𝐴)}

where the assertion is a single, discrete node operating on dense functions of the model state and
returning Boolean values. During compilation, assertions are compiled down to hybrid models, and
turned into discrete simulations using a variant of the solve function of Section 2.8. This is the
current target model of the Zélus compiler; however, simulations of both 𝐴𝑁𝑜𝑑𝑒 and 𝐴𝑆𝑁𝑜𝑑𝑒 are
implemented in the runtime.

3.2 Updated Simulation
The simulation of a system with assertions requires little adjustments from the original simulation
algorithm. The main difficulty resides in the fact that we need to construct a dense function of the entire
parent model’s state. For discrete steps, this is simple: we build a constant function on the model’s state
defined on the interval [0, 0]. For continuous steps, the ODE solver provides us with a dense function
of the continuous part of the state. Since the discrete part of the state is constant during integration,
we can use the approximation returned by the solver, combined with the model’s 𝑐𝑠𝑒𝑡 function, to
build a dense function of the entire state. We need to be careful, however: if the 𝑐𝑠𝑒𝑡 function rewrites
the model’s state in&place (this is the case in the code produced by the Zélus compiler), we must
update the state back to its value at the horizon reached by the ODE solver before starting the next
simulation step.

The simulation state then stores a copy of the model’s continuous state at the reached horizon after
every continuous step. Before every step, we update the model’s state to ensure its correctness.
Continuous steps now produce an additional dense function of the state, which is used as input to the

19

let acstep (HNode model) (DNode solver) state =
 let i = (*...*) in let stop = (*...*) in
 let (({ h=now; u=dky }, z), ss) = solver.step state.ss stop in
 let out = { h=now; u=fun t -> model.fout state.sm (i.u t) (dky t) } in
 let dst = { h=now; u=fun t -> model.cset state.sm (dky t) } in
 let state = (*...*) in
 (Some out, state, Some dst)

let asim (ASNode { m=HNode model; a=DNode assertion }) (DNode solver) =
 let s0 = { (*...*); y=None; sa=a.state } in
 let step state i = match (i, state.mode) with
 | (*...*)
 | None, Discrete ->
 let state = { state with sm=model.cset state.sm state.y } in
 let o, state = dstep (HNode model) (DNode solver) state in
 let y = model.cget state.sm in
 let st = { h = 0.0; u = fun _ -> state.sm } in
 let b, sa = assertion.step state.sa (Some st) in
 assert b; (o, { state with sa; y })
 | None, Continuous ->
 let state = { state with sm=model.cset state.sm state.y } in
 let o, state, st = acstep (HNode model) (DNode solver) state in
 let y = model.cget state.sm in
 let b, sa = assertion.step state.sa st in
 assert b; (o, { state with sa; y })
 | (*...*) in
 let reset state r =
 let sm = model.reset r state.sm and sa = assertion.reset r state.sa in
 { state with mode=Idle; sm; sa; r=true } in
 DNode { s0; step; reset }

Listing 9: Simulation of a model with assertions in OCaml

assertion. A step of the simulation then performs a step of the parent model, as seen in Section 2.6,
and uses the additional output to step the simulation of the assertion as often as needed for it to
reach the model’s reached time, checking the assertion’s output at each step. The updated OCaml
implementation is given in Listing 9.

4 Related Work
Simulink provides observer blocks to monitor signals during execution. These allow for both logging
and monitoring of properties without interference with the model, and may be simulated with their
own solver or together with the main model. They do not, however, allow for nested assertions; an
observer block may not observe another observer block.

5 Conclusion and Future Work
Due to space constraints, we do not repeat the conclusion here, and instead refer the reader to Page 2
for a summary and discussion of future work.

20

Appendix A — Bibliography
[Ben+12] Benveniste, Albert ; Bourke, Timothy ; Caillaud, Benoît ; Pouzet, Marc: Non&standard

semantics of hybrid systems modelers. In: Journal of Computer and System Sciences vol. 78
(2012), Nr. 3, pp. 877–910. — In Commemoration of Amir Pnueli

[BIP16] Bourke, Timothy ; Inoue, Jun ; Pouzet, Marc: Sundials/ML: interfacing with numerical
solvers.. In: ACM Workshop on ML, 2016

[Bou+15] Bourke, Timothy ; Colaço, Jean&Louis ; Pagano, Bruno ; Pasteur, Cédric ; Pouzet, Marc: A
Synchronous&Based Code Generator for Explicit Hybrid Systems Languages.. In: Franke,
B. (ed.): Compiler Construction, Lecture Notes in Computer Science. vol. 9031. Berlin, Heidel&
berg : Springer Berlin Heidelberg, 2015 — ISBN 978&3&662&46662&9, pp. 69–88

[BP13] Bourke, Timothy ; Pouzet, Marc: Zélus: a synchronous language with ODEs.. In: Proceedings
of the 16th international conference on Hybrid systems: computation and control . Philadelphia
Pennsylvania USA : ACM, 2013 — ISBN 978&1&4503&1567&8, pp. 113–118

[CR06] Clarke, Lori A. ; Rosenblum, David S.: A historical perspective on runtime assertion
checking in software development. In: ACM SIGSOFT Software Engineering Notes vol. 31
(2006), Nr. 3, pp. 25–37

[Hen00] Henzinger, Thomas A.: The Theory of Hybrid Automata.. In: Inan, M. K. ; Kurshan, R.
P. (eds.): Verification of Digital and Hybrid Systems. Berlin, Heidelberg : Springer, 2000
— ISBN 978&3&642&59615&5, pp. 265–292

[Hin+05] Hindmarsh, Alan C ; Brown, Peter N ; Grant, Keith E ; Lee, Steven L ; Serban, Radu ;
Shumaker, Dan E ; Woodward, Carol S: SUNDIALS: Suite of nonlinear and differential/
algebraic equation solvers. In: ACM Transactions on Mathematical Software (TOMS) vol. 31,
ACM New York, NY, USA (2005), Nr. 3, pp. 363–396

[HLR92] Halbwachs, N. ; Lagnier, F. ; Ratel, C.: Programming and verifying real&time systems by
means of the synchronous data&flow language LUSTRE. In: IEEE Transactions on Software
Engineering vol. 18 (1992), Nr. 9, pp. 785–793

[Hoa69] Hoare, C. A. R.: An axiomatic basis for computer programming. In: Commun. ACM vol. 12
(1969), Nr. 10, pp. 576–580

[Kay+11] Kaynar, Dilsun K. ; Lynch, Nancy ; Segala, Roberto ; Vaandrager, Frits: The Theory of
Timed I/O Automata, Synthesis Lectures on Distributed Computing Theory. Cham : Springer
International Publishing, 2011 — ISBN 978&3&031&00875&7

[LZ05] Lee, Edward A. ; Zheng, Haiyang: Operational Semantics of Hybrid Systems.. In: Morari,
M. ; Thiele, L. (eds.): Hybrid Systems: Computation and Control, Lecture Notes in Computer
Science. vol. 3414 : Springer Berlin Heidelberg, 2005 — ISBN 978&3&540&25108&8, pp. 25–53

[PHP87] Pilaud, Daniel ; Halbwachs, N ; Plaice, J.A.: LUSTRE: A declarative language for program&
ming synchronous systems.. In: Proceedings of the 14th Annual ACM Symposium on
Principles of Programming Languages (14th POPL 1987). ACM, New York, NY. vol. 178, 1987,
p. 188

[Sny53] Snyder, J.N.: Inverse interpolation, a real root of f (x)= 0. In: University of Illinois Digital
Computer Laboratory, ILLIAC I Library Routine H1�71 vol. 4 (1953)

21

Appendix B — Table of Contents
1 Introduction . 3
2 Hybrid System Model Simulation . 3

2.1 Discrete&Time Models . 3
2.2 Continuous&Time Models . 5
2.3 Numerical ODE Solvers . 6

2.3.1 Sequential Interpretation . 7
2.3.2 Interferences . 8
2.3.3 Solver Steps and Simulation Steps . 8

2.4 Hybrid Models . 9
2.5 Zero&crossing Detection . 12

2.5.1 Combining with an ODE solver . 12
2.6 The Simulation Algorithm . 13

2.6.1 Discrete steps . 14
2.6.2 Continuous steps . 14
2.6.3 Complete definition . 14

2.7 Implementation Details . 15
2.8 Lifting the Runtime . 17

3 Hybrid Observers and Assertions . 17
3.1 Models With Assertions . 19
3.2 Updated Simulation . 19

4 Related Work . 20
5 Conclusion and Future Work . 20
Appendix A — Bibliography . 21
Appendix B — Table of Contents . 22
Appendix C — Additional Code . 23

OCaml Type Definitions . 23

22

Appendix C — Additional Code
OCaml Type Definitions
This appendix contains all OCaml type definitions used in code examples throughout the report. They
are direct translations into OCaml of the mathematical definitions given in the body of the report.

(** Discrete-time model. *)
type ('i, 'o, 'r, 's) dnode = DNode of {
 s0 : 's; (* Initial state. *)
 step : 's -> 'i -> 'o * 's; (* Step function. *)
 reset : 's -> 'r -> 's; (* Reset function. *)
}

Listing 10: Discrete&time model in OCaml

(** Continuous-time model. *)
type ('i, 'o, 's, 'sd) cnode = CNode of {
 s0 : 's; (* Initial state. *)
 fder : 'i -> 's -> 'sd; (* Derivative function. *)
 fout : 'i -> 's -> 'o; (* Output function. *)
}

Listing 11: Continuous&time model in OCaml

(** Hybrid model. *)
type ('i, 'o, 'r, 's, 'y, 'yd, 'zi, 'zo) hnode = HNode of {
 s0 : 's; (* Initial state. *)
 cget : 's -> 'y; (* Get the continuous part of the state. *)
 cset : 's -> 'y -> 's; (* Set the continuous part of the state. *)
 zset : 's -> 'zi -> 's; (* Set the zero-crossing information. *)
 horizon : 's -> time; (* Get the current horizon. *)
 jump : 's -> bool; (* Get discontinuity information. *)
 reset : 's -> 'r -> 's; (* Reset function. *)
 step : 's -> 'i -> 'o * 's; (* Discrete step function. *)
 fder : 's -> 'i -> 'y -> 'yd; (* Derivative function. *)
 fzer : 's -> 'i -> 'y -> 'zo; (* Zero-crossing function. *)
 fout : 's -> 'i -> 'y -> 'o; (* Output function. *)
}

Listing 12: Hybrid model in OCaml

(** Dense function. *)
type 'a dense = {
 h : time; (* Horizon. *)
 u : time -> 'a; (* Function on [0, h]. *)
}

Listing 13: Dense function in OCaml

(** Initial value problem. *)
type ('y, 'yd) ivp = {
 y0 : 'y; (* Initial position. *)
 stop : time; (* Stop time. *)
 f : time -> 'y -> 'yd; (* Derivative function. *)
}

Listing 14: Initial value problem in OCaml

(** ODE solver. *)
type ('y, 'yd, 's) csolver =
 (time, 'y dense, ('y, 'yd) ivp, 's) dnode

Listing 15: ODE solver as a discrete&time model in OCaml

23

(** Zero-crossing problem. *)
type ('y, 'zo) zcp = {
 y0 : 'y; (* Initial position. *)
 f : time -> 'y -> 'zo; (* Zero-crossing function. *)
}

Listing 16: Zero&crossing problem in OCaml

(** Zero-crossing solver. *)
type ('y, 'zi, 'zo, 's) zsolver =
 ('y dense, time * 'zi option, ('y, 'zo) zcp, 's) dnode

Listing 17: Zero&crossing solver as a discrete&time model in OCaml

(** Full solver. *)
type ('y, 'yd, 'zi, 'zo, 's) solver =
 (time, 'y dense * 'zi option, ('y, 'yd) ivp * ('y, 'zo) zcp, 's) dnode

Listing 18: Complete solver mechanism in OCaml

(** Hybrid simulation mode. *)
type mode = Discrete | Continuous | Idle

(** Hybrid simulation state. *)
type ('i, 'sm, 'ss) state = {
 sm : 'sm; (* Model state. *)
 ss : 'ss; (* Solver state. *)
 mode : mode; (* Simulation mode. *)
 r : bool; (* Reset flag. *)
 i : 'i dense option; (* Current input. *)
 now : time; (* Current time. *)
}

Listing 19: Hybrid simulation state in OCaml

(** Hybrid model with a single assertion. *)
type ('i, 'o, 'r, 'sm, 'sa, 'y, 'yd, 'zi, 'zo) asnode = ASNode of {
 m : ('i, 'o, 'r, 'sm, 'y, 'yd, 'zi, 'zo) hnode; (* Model. *)
 a : ('sm signal, bool, 'sa) dnode; (* Assertion. *)
}

Listing 20: Hybrid model with assertion in OCaml

24

	Introduction
	Hybrid System Model Simulation
	Discrete-Time Models
	Continuous-Time Models
	Numerical ODE Solvers
	Sequential Interpretation
	Interferences
	Solver Steps and Simulation Steps

	Hybrid Models
	Zero-crossing Detection
	Combining with an ODE solver

	The Simulation Algorithm
	Discrete steps
	Continuous steps
	Complete definition

	Implementation Details
	Lifting the Runtime

	Hybrid Observers and Assertions
	Models With Assertions
	Updated Simulation

	Related Work
	Conclusion and Future Work
	Appendix A — Bibliography
	Appendix B — Table of Contents
	Appendix C — Additional Code
	OCaml Type Definitions

