
Proofs on inductive predicates in the WhyML
programming language

Henri Saudubray∗

July 5, 2024

Abstract

The Why3 environment provides so called “inductive predicates” as a means
to describe inductive properties. However, there is no way to analyse the structure
of instances of these predicates directly in WhyML code. This case analysis is cru-
cial in proofs by induction on these properties, and its absence from the WhyML
language prevents these proofs from being automatically discharged by automatic
theorem provers. We thus present a new language construct for case analysis on in-
ductive predicate instances in WhyML, and an example use case in the translation
of a Coq proof to WhyML.

1 Introduction

The Why3 environment is a tool for deductive program verification [4] based on
a first-order logic with ML-style polymorphic types [2], which provides a common
interface and specification language for interacting with multiple automated provers
and proof assistants in order to discharge proof obligations. Why3 provides an
accompanying programming language, WhyML, an ML dialect restricted to first
order to be able to generate first-order proof obligations. Why3 also provides
the user with multiple extensions to its core first-order logic: recursive definitions,
algebraic data types, and inductive predicates [3]. The latter allow the user to
express inductive properties on data through a set of constructors with access to
recursion.

While automated provers cannot usually reason by induction, automatic proofs
by induction on values is still possible in Why3 by representing proofs as recursive
functions validating a specification, which can be seen as proof objects through the
Curry-Howard isomorphism, and then proving their termination, typically through
a base case and a decreasing argument. Unfortunately, case analysis on inductive
predicates is not possible, preventing automatic proofs by induction on the instances
of inductive predicate. We introduce a new construct to the WhyML programming
language allowing for case analysis on inductive predicate instances, and allowing
for automatic proofs by induction on these predicates.

All of the code and proof associated with this report is freely available online
at https://codeberg.org/17maiga/lambda.

∗Université Paris Saclay, henri.saudubray@universite-paris-saclay.fr

1

https://codeberg.org/17maiga/lambda
mailto:henri.saudubray@universite-paris-saclay.fr

2 Context

2.1 WhyML: Programming and Specification Language

WhyML code lives in two separate worlds: logic and programs. Logic is used
to describe program specifications and logical properties on programs, and is not
included when translating WhyML code to OCaml or C. Programs are the ac-
tual executable code which we wish to reason about. Logic allows for a variety
of constructs that are not available in programs, such as universal and existential
quantifiers or inductive definitions. All logical definitions require proof of termina-
tion, and Why3 will attempt to find a decreasing argument for each call. If such
an argument cannot be found, the user must then manually provide a variant.

2.1.1 Inductive Predicates

WhyML includes inductive predicates, which allow the user to describe inductive
properties through a set of constructors with access to recursion. Similarly to
Coq’s inductive definitions [8], calls to these predicates, which we call instances,
are theoretically associated with a proof object representing the structure of the
instance. This object is constructed through a finite number of applications of the
constructors associated with the inductive predicate. However, this object does not
currently exist as a tangible value in Why3.

As an example of an inductive predicate, we can define the reflexive transitive
closure red of β-reduction in the λ-calculus as an inductive predicate, with three
constructors for the possible cases of this reduction, as follows:

inductive red term term =

| refl: forall x. red x x

| step: forall x y. beta x y → red x y

| trans: forall x y z. red x y → red y z → red x z

Inductive predicates allow for the description of recursive properties based on
case analysis on the structure of these properties. They are similar to recursive
predicates, and a number of properties can be expressed using both, with advantages
and disadvantages in either case, as seen in the example below.

let rec predicate even (n: int)

variant { n }

= n = 0 || n > 1 && even (n-2)

inductive even int =

| O: even 0

| S: forall n. even n → even (n+2)

One particular advantage of inductive definition instances is that they are finite
by construction. Since any proof of an inductive property is associated with a finite
proof tree obtained through applications of the associated constructors, proofs by
induction on an inductive predicate instance can immediately use this proof tree
as a decreasing argument to prove their termination. Recursive predicates, on the
other hand, need to manually specify a variant in order to prove termination, and
prove that said variant is indeed decreasing for each recursive call.

Inductive definitions also have a non-deterministic nature. If we look at the
example for red above, we can build multiple different proof trees for the same
property, and some constructors can introduce variables not initially present in the

2

context.

step
x →β z

refl
z = y

z →∗
β y

x →∗
β y

trans

refl
x = z

x →∗
β z

step
z →β w

refl
w = y

w →∗
β y

z →∗
β y

x →∗
β y

This ability to introduce variables will become particularly important in proofs by
induction on inductive predicate instances, as they come with additional properties
based on the constructor; in the example above, the variables w and z are introduced
along with the properties defined in the constructors that introduce them.

In a system like Coq, an inductive definition like even above is automatically
associated with a higher-order induction principle:

even_ind : forall P : nat → Prop.

P 0 →
(forall n. even n → P n → P (n+2)) →
forall n. even n → P n.

When the induction tactic is used, this induction principle is then instantiated
depending on the current goal, and the resulting goals correspond to the different
constructors of the inductive definition.

2.1.2 Lemma Functions

Typical lemmas in WhyML are strictly logical and simply introduce a new premise
in the logical context (and require the user to prove it) for further use. One can
specify an implementation for the lemmas by turning it into a lemma function.
These introduce both a logical premise based on the function’s contract, with uni-
versally quantified variables to represent the arguments, and a ghost function usable
in programs. The following definitions are therefore logically equivalent.

lemma even_nonneg:

forall x: int.

even x → x ≥ 0

let lemma even_nonneg (x: int)

requires { even x }

ensures { x ≥ 0 } = ()

In our case, lemma functions present two interesting advantages: function bodies
and recursion. Since lemma functions are also programs, they require a function
body, allowing the user to direct the lemma’s proof through constructs like case
analysis and conditions, and making the task easier for SMT solvers afterwards. A
standard lemma does not permit this flexibility, instead relying on the context and
interactive proof through manual application of logical transformations on the goal
by the user. This is typically done in Why3’s graphical interface. The nature of
the lemma function as a program also permits recursive calls to itself as part of the
proof, essentially allowing the user to perform proofs by induction on the arguments
of the lemma function. Proof by induction on values is therefore possible, as seen
in the example below.

3

let rec lemma len_nonneg (l: list α)
ensures { length l ≥ 0 }

variant { l }

= match l with

| Nil → ()

| Cons _ r → len_nonneg r

end

Similarly to this, one could see how we would want to analyse the structure of
an inductive predicate instance in order to do proofs by induction on it. As an
example, suppose we introduce red a little differently: we remove the transitivity
constructor trans, and instead add another precondition to the step constructor.
We then want to prove the transitivity of red manually:

inductive red term term =

| refl: forall x. red x x

| step: forall x y z. beta x y → red y z → red x z

lemma red_trans:

forall x y z. red x y → red y z → red x z

To prove red_trans, we could do a simple proof by induction on the derivation
of red x y. In the case refl, we have that x = y, and we can then conclude
red x z. In the case step, there exists an element w such that beta x w and
red w y. By our induction hypothesis, we have that red w z, and thus we can
conclude red x z, which concludes the proof.

This reasoning cannot be done by automated solvers on their own, and thus
the proof of red_trans is not automated; it requires manual intervention from
the user, typically by applying the induction_pr tactic in Why3’s interactive
interface. Reasoning using the variable w is also not currently possible in WhyML,
as we have no way to decompose an instance of an inductive predicate.

3 A New Construct for Case Analysis

To solve this, we introduce a new construct to the WhyML language, which we
call match inductive. Similarly to the existing match construct for case analysis
on algebraic data types, this new construct allows for case analysis on instances
of inductive predicates. We want a way to associate the structure of the inductive
predicate instance with a name, which we can then use as the value we perform our
case analysis on. Syntactically, we use the existing annotation system to associate
a name to a lemma’s precondition. This precondition must be a single call to an
inductive predicate, and the name is then associated with this call’s instance. We
can then use this name as the target of our case analysis.

let rec lemma red_trans (x y z: term)

requires rxy { red x y }

requires { red y z }

ensures { red x z }

= match inductive rxy with

| (* ... *)

end

4

However, we still need a way to represent internally the term associated with
this proof. In Coq, this problem is solved by the fact that every proof is defined by
a tangible term which we can directly manipulate. We do not have access to such
a term in Why3, and need to provide either a tangible term or simulate it using
existing elements.

3.1 A First Approach: Proof Witnesses

The immediate approach is to create a witness type representing an instance of an
inductive predicate, and internally translate proofs without this witness, written
by the user, to proofs with this witness:

type red’witness =

| refl’witness term

| step’witness term term term red’witness

We can then generate an equivalent recursive predicate using this witness

predicate red’witness (x y: term) (w: red’witness) =

match w with

| refl’witness x0 → x0 = x ∧ x0 = y

| step’witness x0 y0 z w0 → x0 = x ∧ z = y ∧ beta x0 y0 ∧
red’witness y0 z w0

end

and utilities establishing the equivalence relationship between a predicate and its
witness, that is, a way to obtain a witness for an instance of an inductive predicate,
and a proof that the recursive predicate with witnesses defined above implies the
original inductive predicate:

val ghost function red’get_witness (x y: term) : (w: red’witness)

requires { red x y }

ensures { red’witness x y w }

let rec lemma red’witness_to_red (x y: term) (w: red’witness)

requires { red’witness x y w }

ensures { red x y }

variant { w }

= match w with

| refl’witness _ → ()

| step’witness x0 y0 z w0 → red’witness_to_red y0 z w0

end

We can then transform the match inductive expression into a standard match

on the structure of the associated witness, obtained through a call to one of the
generated utility functions.

let rec lemma red_trans (x y z: term)

requires rxy { red x y }

requires { red y z }

ensures { red x z }

= match red’get_witness x y with

| refl’witness _ → ()

5

| step’witness _ y0 _ _ → red_trans y0 y z

end

While this method works, it is quite cumbersome and verbose, and introduces
several auxiliary definitions and premises in the logical context which negatively
impacts both the provers and the user. Since some provers do not support alge-
braic data types, Why3 applies a series of logical transformations (most notably
eliminate_algebraic) which introduce a number of definitions simulating alge-
braic data types in the prover’s logic. These definitions would needlessly pollute
the logical context, resulting in poorer performance compared to a solution without
such constructs.

The proof of termination is also not immediate. If each recursive call uses one of
the utility lemmas generated by the definition of our inductive predicate to obtain
a witness, nothing ensures that the witness obtained in recursive calls (which can
theoretically be considered as an argument of the lemma) is a smaller term than
the witness we are currently doing case analysis on. One solution to this is to
transform the entire lemma to take in an additional witness argument and pass
in the witnesses obtained through our case analysis to the recursive calls. While
this could work, how do we handle the case where Why3 cannot infer a decreasing
argument automatically? Witnesses are hidden from the user, and thus we cannot
expect the user to provide a decreasing variant using them explicitly.

3.2 A Better Approach: Ghost Functions

We can in fact find a simpler solution. The induction principle associated with our
inductive predicate definition tells us that it suffices to prove a property for each
constructor of our predicate in order to prove it for every possible instance of our
predicate. We can therefore handle each possible constructor separately and assume
our postcondition once every constructor has proved it. Each constructor must be
able to conclude the postcondition independently from all other constructors in
order for the proof to be valid.

This goes against our previous intuition of using the witness as an explicit
decreasing argument in order to ensure termination. In fact, the issue of being
able to deduce that the instance we are doing case analysis on in recursive calls is
in fact a subterm of the original instance is still present. Even worse, there is no
such instance anymore, only the properties provided by the lemma’s preconditions!
What is stopping us from reaching the conclusion using the wrong constructors?

However, we can convince ourselves that this approach works. Since each con-
structor is able to prove the postcondition independently from all the others (and
only this postcondition), we know that even if we are able to prove our postcondi-
tion using the wrong constructor, we could always prove it using the right one. We
cannot then express anything more than we would have been able to with explicit
witnesses, since all constructors only allow us to conclude exactly the postcondition,
and only weaken our expressivity through their added prerequisites. Thus, what
we can prove without a witness, we can prove with one.

The structure used to represent a constructor must then be able to introduce
variables, specify preconditions and postconditions in order to represent the vari-
ables and properties defined in the constructor as well as ensure that the constructor
does prove the postcondition, while not introducing any property in the logical con-
text it is defined in. These requirements directly match one existing structure: a

6

ghost function. Why3 will require a proof of its contract, but the ghost function
will not introduce any premises in the logical context and will not be usable in
programs, thus ensuring that all constructors are proved separately.

We can then generate a set of local ghost functions (one for each constructor
defined in the inductive predicate), with arguments for the constructor’s univer-
sally quantified variables, preconditions introducing the properties specified in the
constructor, and identical postconditions to those of the parent scope. Since we
are doing case analysis on a specific instance of an inductive predicate, we also in-
troduce preconditions for the unification of the instance’s arguments and the ghost
function’s arguments. We can see below what a fragment of the body of red_trans
might look like, with its associated translation inside Why3. We analyze the pre-
condition rxy { red x y } and handle the refl constructor, where x and y are
both equal to a term a.

match inductive rxy with

| refl a → ()

| (* ... *)

end

let ghost refl (a: term)

requires { a = x ∧ a = y }

ensures { red x z }

= () in (* ... *)

In order to obtain the arguments and preconditions of the ghost function, we
extract from the constructor’s definition all universally quantified variables and
hypotheses, as well as the final call to the inductive predicate. We can then gen-
erate local variables for each universally quantified variable and substitute them in
the hypotheses. We also introduce equalities between the arguments of the induc-
tive predicate instance we are performing case analysis on and their corresponding
expressions in the constructor.

let rec lemma even_nonneg n

requires e { even n }

ensures { n ≥ 0 }

variant { inductive e }

= match inductive e with

| O → ()

| S n’ _ → even_nonneg n’

end

let rec lemma even_nonneg n

requires e { even n }

ensures { n ≥ 0 }

variant { inductive e }

= let ghost O ()

requires { n = 0 }

ensures { n ≥ 0 }

= () in

let ghost S (n’: int)

requires { even n’ }

requires { n = n’ + 2 }

ensures { n ≥ 0 }

= even_nonneg n’ in

assume { false }; absurd

A consequence of this method is that since each constructor must prove the
postcondition of the lemma independently, match inductive must be in tail po-
sition, that is, it should be the last expression evaluated during execution of the
lemma’s body. By the induction principle, once each constructor has independently
proved our postcondition, we can safely conclude our postcondition for any instance
of our inductive predicate, and our lemma is proved. However, since the ghost func-
tions do not introduce anything in the logical context, Why3 still needs to prove

7

the postcondition (which we now know to be true) once all ghost functions have
been proven. Since we know this postcondition is true, we can simplify the work
of the provers by making the conclusion trivial: we introduce a local assumption of
false, which allows the provers to trivially conclude the postcondition. If the par-
ent lemma is expected to return a value, we then follow this assumption by absurd,
which can assume any type, and therefore matches the return type of the parent
lemma. This is once again valid, since all ghost functions must return a value of
said type in order for the postconditions to be valid, and match inductive is in
tail position, ensuring that the value returned by it is the return value of the parent
lemma.

Type inference for variables declared in match inductive patterns is possible, and
is done through unification of the types obtained by instanciating the associated
constructor in the inductive predicate’s definition with the types of the predicate
instance’s arguments as well as in the lemma’s requirements.

As for termination, we require the user to specify an inductive predicate instance
through its associated name, and simply check for each recursive call that the
property associated with this variant is obtained through case analysis of the same
property in the parent recursive call. This inductive variant can be provided as part
of a list of terms treated in lexicographic order. Implementation of this feature is
still ongoing.

In a way, what we do here is almost identical to what the induction tactic
does in Coq. When the even_ind induction principle is instantiated, the resulting
goals are the proofs for each constructor of the postcondition P, with the induction
hypothesis added to the logical context when relevant. Here, P is represented by
our postcondition, which we generate a proof of for each constructor. The only
difference is that we choose to remain faithful to Why3’s usual way to do proofs by
induction, that is, let the user obtain the induction hypothesis manually through a
recursive call to the lemma.

4 Application: Lambda-Calculus in WhyML

As a way to test our new construct, we propose a direct translation of Gérard
Huet’s λ-calculus formalisation in Coq to WhyML using match inductive. This
formalisation originates from an implementation of a variety of λ-calculus results
in OCaml, as part of a lecture on computability [6]. It was followed by a partial
reimplementation and proof in Coq, which we base our translation on. As this
proof heavily relies on induction on Coq’s inductive predicates, it is thus a typical
example of a proof one would want to do with match inductive if translated
to WhyML. We attempt to faithfully reproduce the original proof, with as few
differences as possible.

4.1 A Lambda-Calculus Reminder

The λ-calculus [1] is a theory of computation based on functions and their applica-
tions, originally conceived by Alonzo Church in 1932 as part of his research around
a foundational system for mathematics. Terms in the λ-calculus are inductively
defined by the following grammar:

Computation is represented through the notion of transformations on terms

8

T ::= x Variable representing a parameter
| λx.T Abstraction with parameter x
| (T T) Application

called reductions, most notably the β-reduction:

(λx.M N) →β M [x/N],

where M [x/N] denotes the term M in which all free occurrences of variable x are
instantiated with N . Multiple methods can be used to solve naming conflicts during
substitution, such as α-equivalence or de Bruijn indices, in which variables are rep-
resented by natural numbers whose value refers unambiguously to the abstraction
they are bound to:

λx.(x x) ≡ λ.(0 0) λx.λy.(x y) ≡ λ.λ.(1 0)

Identifying free and bound variables is then immediate. Instantiation of a variable
by a term then requires updating references in the substituted term depending on
the location where the term is substituted.

λz.λy.((λx.(x y)) z) →β λz.λy.(z y)

λ.λ.((λ.(0 1)) 1) →β λ.λ.(1 0)

4.2 Proven Results

The Coq formalisation represents λ-calculus terms with de Bruijn indices and im-
plements β-reduction through an Inductive datatype and a Fixpoint definition.
Parallel β-reduction, which consists in the simultaneous application of a single step
of β-reduction on one or more redexes in a term, is defined. The reflexive transitive
closures of β-reduction and its parallel version are implemented and proven to be
equivalent.

A second representation of terms with marked redexes is also provided. These
terms are identical to the first representation, except for an additional Boolean
flag on applications indicating marked redexes. Terms in this representation then
represent sets of such redexes. A predicate for the regularity of such terms (that
is, whether marked applications truly represent a redex) is provided, as well as
whether two terms are compatible (equal when removing marks). The union of two
different sets of redexes on a same term is also provided.

Once again, substitution of terms is defined, this time taking into account
the marked redexes, and a proof the preservation of regularity and compatibility
through substitution of terms is made.

The notion of residuals of redexes, which studies the evolution of a redex through
the reduction of another redex in the term, is defined through parallel β-reduction
over terms with marked redexes, and relationship with union, regularity, and com-
patibility of these terms is established. This concept sees terms with marked redexes
as a way to denote parallel β-reduction steps (all marked redexes are reduced in a
single step). The residuals of a set of redexes through a step of parallel β-reduction is
defined. The equivalence of residuals and the first definition of parallel β-reduction
on terms is established, and the Prism Theorem and Lévy’s Cube Lemma are then
proven as seen in Gérard Huet’s original article on the matter [5].

9

U
V

W

U\V
W\V

W\U

Figure 1: The Prism Theorem.

U
V

W

W\U W\V

U\VV \U

W\(U ∪ V)

Figure 2: Lévy’s Cube Lemma.

The Prism Theorem states that for a compatible set of redexes U , V , and W ,

V ⊂ U =⇒ W\U = (W\V)\(B\U),

where A\B denotes the residuals of A through the step of parallel β-reduction B.
Lévy’s Cube Lemma, which states that for every compatible set of redexes U , V ,
and W ,

(W\V)\(U\V) = (W\U)\(V \U),

can then be seen as a corrollary of this.
The confluence of multi-step β-reduction is proven using the Tait-Martin-Löf

method, that is, through the parallel-moves lemma, which states that if a term M
reduces to terms N and P through one step of parallel β-reduction, then N and
P both reduce to a common term Q through one more step. The confluence of
multi-step parallel β-reduction and multi-step β-reduction are then corollaries of
this lemma. Finally, the Church-Rosser theorem is proved with β-conversion.

The entire proof in Coq represents 1263 lines of code, with 511 for the speci-
fication and 768 for the proof, as reported by the coqwc tool. More interesting in
our case, the proof contains 42 occurrences of the induction tactic applied to an
instance of an inductive predicate, more than half of all applications of this tactic.

10

N

M P

Q
∗

∗

∗

∗

Figure 3: The Church-Rosser Theorem.

4.3 Translation to WhyML

The translation to WhyML is mostly a direct translation of the Coq version with
WhyML constructs. Inductive Set definitions are directly represented by algebraic
data types, and inductive Prop definitions by inductive predicates, as seen below:

(* Coq *)

Inductive lambda : Set :=

| Ref : nat → lambda

| Abs : lambda → lambda

| App : lambda → lambda → lambda.

Inductive red : lambda → lambda → Prop :=

| step: forall M N, beta M N → red M N

| refl: forall M, red M M

| trans: forall M N P, red M N → red N P → red M P.

(* WhyML *)

type lambda =

| Ref int

| Abs lambda

| App lambda lambda

inductive red lambda lambda =

| step: forall m n. beta m n → red m n

| refl: forall m. red m m

| trans: forall m n p. red m n → red n p → red m p

Properties whose proof does not rely on induction are proven by automatic
provers with little to no need for manual intervention, and are thus only stated
as lemmas in the WhyML source code. When a proof by induction is required,
however, we instead state the proof as a recursive lemma-function with the appro-
priate specification. If the induction is done on a value (in Coq, an inductive Set

definition), we simply do case analysis with match and perform recursive calls when
needed. If the induction is done on an inductive Prop definition, we associate a
name to this property either through the lemma’s preconditions or through one of
the binders in a parent match inductive branch, and perform case analysis with
match inductive.

(* Coq *)

Lemma red_abs :

11

forall M M’ : lambda, red M M’ → red (Abs M) (Abs M’).

Proof.

simple induction 1; intros.

- apply step; apply abs; trivial.

- apply refl.

- apply trans with (Abs N); trivial.

Qed.

(* WhyML *)

let rec lemma red_abs (m m’: lambda)

requires r { red m m’ }

ensures { red (Abs m) (Abs m’) }

variant { inductive r }

= match inductive r with

| step _ _ _ → ()

| refl _ → ()

| trans m n m’ _ _ → red_abs m n; red_abs n m’

end

One notable difference between the two proofs is due to the absence of a data
type for natural numbers in WhyML, which only has integers; some results there-
fore assume that some integers are non-negative as an added hypothesis. Another,
perhaps more striking difference is the way the proof of confluence has been handled.
In the Coq version, Gérard Huet first defines the notion of confluence with both
datatype and relation as parameters, and then instantiates this with the lambda

datatype representing λ-terms and multiple different reduction relations.

Definition confluence (A : Set) (R : A → A → Prop) :=

forall x y : A, R x y →
forall z : A, R x z →
exists u : A, R y u ∧ R z u.

Lemma lemma1 : confluence lambda par_red → confluence lambda red.

We cannot express this definition in WhyML without relying on Why3’s mod-
ule and cloning system, since we are in a first-order logic, as we cannot directly
abstract over a type in a definition as in Coq. However, we can abstract over a re-
lation like R above, thanks to Why3’s extensions and encodings to first-order logic.
Fortunately for us, the proof in Coq does not use its definition of confluence with
any other data type, and so we can define the confluence in Why3 specifically for
λ-terms, with the relation as a parameter, and proceed from there. We do not end
up having to define it more than once, but the limitations of Why3’s expressivity
compared to Coq are made clear in this example.

Aftermath. The final proof in WhyML stands at 914 lines of code, with 521
for the specification and 393 for the proof, just over 50% of the Coq version. The
overwhelming majority of the code for the proof is simply composed of uses of
match inductive to handle the case analysis of the predicates, and recursive calls
which provide the induction hypotheses necessary for the conclusion of the final
postcondition. All proof obligations are discharged by automatic theorem provers

12

with little to no manual intervention, with the exception of the application of the
split_vc tactic at times.

5 Related Work

Describing properties through inductive definitions is done in systems like Coq,
Isabelle/HOL, or Agda, which all provide a way to reason on properties in a
direct manner. Implementations vary; Coq directly provides a proof term with
the property as type and allows the user to manipulate this term directly, thus
allowing for structural case analysis and recursion; both Coq and Isabelle/HOL
automatically generate an induction rule with each inductive definition to be used
in tactic applications.

Systems like Dafny [7] do not have an equivalent construct to inductive predi-
cates, and instead express such properties through recursive functions over regular
data types. Proofs by induction on these properties are then done through recursive
lemmas, and a structurally decreasing argument must be provided as a variant for
each recursive call.

6 Conclusion and Perspectives

We provide a possible encoding of case analysis on inductive properties in Why3’s
first-order logic, relying on the induction principle as a metatheoretical argument
for the soundness of our approach. However, it is not the only way to proceed,
as we have seen from our first attempts with explicit witnesses, and further work
exploring how these witnesses might be represented in systems such as Why3 with-
out resorting to a full representation of proofs as tangible terms à la Coq could
provide alternatives.

However, despite its limitations, this method already shows its usefullness, as
seen in the translation of Gérard Huet’s work. A large number of proofs relying on
inductive properties, such as formalisations of type systems and program semantics,
can now be expressed in Why3 with little to no difficulty, giving access to all of
Why3’s advantages as a platform. Such work would be an excellent way to test
the limitations of match inductive, and open up new research paths and ideas.

Aknowledgements. I wish to thank both Jean-Christophe Filliâtre1 and An-
drei Paskevich2, the supervisors of the internship which resulted in this work, for
their crucial insight and support.

References

[1] Henk P Barendregt. Lambda calculi with types. Handbook of Logic in Computer
Science, 2:118–413, 1993.

[2] Joshua M Cohen and Philip Johnson-Freyd. A formalization of Core Why3 in
Coq. Proceedings of the ACM on Programming Languages, 8(POPL):1789–1818,
2024.

1Laboratoire Méthodes Formelles, jean-christophe.filliatre@cnrs.fr
2Laboratoire Méthodes Formelles, andrei.paskevich@universite-paris-saclay.fr

13

mailto:jean-christophe.filliatre@cnrs.fr
mailto:andri.paskevich@universite-paris-saclay.fr

[3] Jean-Christophe Filliâtre. One logic to use them all. In International Conference
on Automated Deduction, pages 1–20. Springer, 2013.

[4] Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where programs meet
provers. In Programming Languages and Systems: 22nd European Symposium
on Programming, ESOP 2013, Held As Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings 22, pages 125–128. Springer, 2013.

[5] Gérard Huet. Residual theory in λ-calculus: a formal development. Journal of
Functional Programming, 4(3):371–394, 1994.

[6] Gérard Huet. Constructive computation theory. Course notes on lambda cal-
culus, University of Bordeaux I, 2011.

[7] K Rustan M Leino. Dafny: An automatic program verifier for functional correct-
ness. In International conference on logic for programming artificial intelligence
and reasoning, pages 348–370. Springer, 2010.

[8] Christine Paulin-Mohring. Définitions Inductives en Théorie des Types. PhD
thesis, Université Claude Bernard-Lyon I, 1996.

14

	Introduction
	Context
	WhyML: Programming and Specification Language
	Inductive Predicates
	Lemma Functions

	A New Construct for Case Analysis
	A First Approach: Proof Witnesses
	A Better Approach: Ghost Functions

	Application: Lambda-Calculus in WhyML
	A Lambda-Calculus Reminder
	Proven Results
	Translation to WhyML

	Related Work
	Conclusion and Perspectives

